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Abstract

This thesis describes extensions to state machines in the Umple model-oriented
programming language to offer queued state machines (QSM), pooled state machines
(PSM) and handing of the arrival of unexpected events. These features allow for
modeling the behavior of a system or protocol in a more accurate way in Umple
because they enable detecting and fixing common design errors such as unspecified
receptions. In addition, they simplify the communication between communicating state
machines by allowing for asynchronous calls of events and passing of messages
between state machines. Also, a pooled state machine (PSM) has been developed to
provide a different policy of handling events that avoid unspecified receptions. This
mechanism has similar semantics as a queued state machine, but it differs in the way of
detecting unspecified receptions because it helps handling these errors. Another
mechanism has been designed to use the keyword ‘unspecified’ in whatever state of a
state machine the user wants to detect these errors. In this thesis, the test-driven
development (TDD) process has been followed to first modify the Umple syntax to add
‘queued,’ ‘pooled,” and ‘unspecified’ keywords to Umple state machine’s grammar; and
second, to make a change to the Umple semantics in order to implement these
extensions in Umple. Then, additional modifications have been made to allow for Java
code generation from those types of state machines. Finally, more test cases have been
written to ensure that these models are syntactically and semantically correct. In order
to show the usefulness and usability of these new features, an example is shown as a
case study that is modeled using the queued state machine (QSM) besides other small

tests cases.
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Chapter 1 Introduction

Complex computer-based systems have become essential nowadays. Most such
systems comprise a number of entities that operate concurrently and cooperate with
each other via communications (Van der Schoot, 1999).

The behavior of concurrent systems has a tendency to become very large and
complex. It is therefore hard to model, design, and specify the functionality of such
systems and assess whether they meet their requirements (Van der Schoot, 1999).

Important aspects of concurrent systems are communication protocols, wherein
the entities communicate according to standard rules (Van der Schoot, 1999). The
complexity of these systems is increasing due to the trends toward distributed
computing and computer networks.

To handle this complexity, formal methods of specification and analysis of
communication software have been used. One such approach is finite state machines
(FSM) (Bochmann, 1978). FSM models are widely used for describing and specifying
systems in different areas such as sequential circuits, distributed systems,
communication networks, and communication protocols. They can also be used to
model the behavior of business objects and user interfaces.

A finite state machine (FSM) can be described as follows: Each FSM has a finite
number of states and transitions between these states. A finite state machine moves
from one state into another when a specified event occurs. During the transition it can
perform various actions if specified: an exit action from the origin state, a transition
actions, and an entry action for the destination state.

When multiple state machines are used in a distributed system, they can be used
to control transmission and reception of communication by exchanging messages over
FIFO channels through which the signals flow (Gouda & Chang, 1984).

Umple (Lethbridge, Forward & Badreddin, 2012) supports defining state
machines in a textual manner to be used for modeling and implementing various kinds
of systems and processes. Umple is a model-oriented programming language developed

at the University of Ottawa. It is a textual language that adds Unified Modeling



Language (UML) state machines, and class models to well-known object-oriented
programming languages such as Java, PHP, C++ and Ruby. It also supports software
patterns such as singleton (Almaghthawi, 2013).

Badreddin (2012) discussed in his PhD thesis the development process for the
syntax and semantics of state machines in Umple. He completed the design and
implementation of the first version of state machines in Umple. Moreover, he illustrated
how the modeling concepts and code of state machines and other system aspects can be
integrated in the same artifact; this allows developers to model and write code at the
same time (Badreddin, 2012).

However, in the version of Umple as it stood at the time the current thesis
research was started, there was no feature that allowed for state machines to
communicate via FIFO queues. Events were implemented as synchronous method calls,
and, the same thread that called the event was responsible for processing the state
transition, as well as any entry, exit and transition actions. This implementation could
be very useful to control the state of a single object, but was impractical in multi-
threaded software, and could give rise to deadlock, among other problems.

Therefore, we set out to enhance the code generated from Umple so events
would be queued; the caller would enter the event in the queue and then continue. This
would allow state machines to communicate asynchronously by passing messages in a
FIFO manner, and where the output message of one state machine becomes the input
for another. The caller of an event message does not have to wait for the state machine
to process all of its actions, as had been required in basic state machines in Umple. We
call this new extension queued state machines (QSM).

Also, we add so-called pooled state machines (PSM). Pooled state machines
extend QSM as follows. In original Umple state machines, and queued state machines, if
an event arrives while in a state that is not programmed to respond to that state, then
the event is ignored and discarded. This problem is called unspecified reception. In
PSM, the event is retained at the front of the queue until the system enters a state in
which the event can be consumed. Events further back in the queue are processed in
the meantime. Among other things, PSM can handle events arriving at unexpected

times.



A third feature added is the capability to handle unspecified receptions by
designating a transition to be taken when an unexpected event arrives.

An additional feature added to Umple in this thesis is the ability to allow state
machine events to have parameters of any type. This makes Umple conform more
closely to UML specifications, in which signals and call events can have parameters.

In order to achieve these extensions to Umple, we followed a Test-Driven
Development (TDD) methodology. Test-driven development encourages short
development cycles or iterations and requires writing tests before releasing any
incremental change (Patrick, 2006). The process essentially is to write test code before
writing functional code. When these tests are first run, they fail because the desired
behavior does not exist yet. To pass these tests, new code is produced. Now, running
test code again passes. Finally, the new code is refactored to acceptable standards and
to remove any duplications that may occur (Ambler, 2012).

Refactoring the existing design locally enables changing the part of the design
that is affected by the new feature a developer wants to implement. This process results
in enhancing the quality of the design and makes it easier to work with it in the future.
In fact, TDD helps derive the design of the code as well as validate it (Ambler, 2012).

Therefore, we go through several steps as a whole cycle consists of extending
Umple sate machine grammar with new syntax, instantiating Umple metamodel, as well
as generating appropriate code in the target language (Java) in order to implement

those new features.

1.1 Goal of the Thesis

The main goal of this thesis is to extend the Umple model-oriented programming
language in order to provide for queued and pooled state machines, a well as event
arguments and unspecified reception transitions. The thesis will show how we

implemented this feature following the test-driven approach.

The resulting generated code will be more complex but it will work in a multi-

threaded environment and allow asynchronous calls to events.



1.2 Research Questions

The current thesis will address the following three research questions:

* How can the Umple Language be extended to have queued and pooled state

machines?

* How could the messages be encoded when they are passed between state

machines?

* How can one deal with cases of unspecified receptions, for example, error

messages?

1.3 Thesis Outline

The thesis is documented and organized in the following manner.

In Chapter 2, we provide some background information related to the Umple
model-oriented programming language, showing its development infrastructure and its
different tools. We also give an overview of the methodologies used to developing
Umple.

In Chapter 3, we focus on the literature review of formal description techniques
(FDTs) used for specifying and describing communication protocols and distributed
systems. We provide a brief overview of some general design errors, and we outline
some proposed solutions for handling them.

In Chapter 4, we discuss our design of queued state machine (QSMs), and we
also provide the design of a pooled state machine (PSMs). We show Java code for QSM
and PSM, and we discuss the different design alternatives we have for QSM and PSM. In
addition, we demonstrate the syntax and semantics of QSM and PSM in Umple.

Chapter 5 discusses the implementation of QSM and PSM in Umple showing
some examples of generated Java code from simple and composite QSM and PSM. We
also discuss various issues related to the design and implementation of QSM and PSM.

Besides, we give an overview of proposed unspecified reception mechanisms in Umple.



In Chapter 6, we show some test cases of QSM, PSM, and the unspecified
reception mechanism in Umple. Also, we provide an example showing the usefulness of
QSM in Umple.

Finally, in Chapter 7, we conclude our thesis and discuss different possibilities

for future work.



Chapter 2 Umple: A Model-Oriented Programming Language

2.1 Introduction to Umple

Umple is a model-oriented programming language developed at the University
of Ottawa (Badreddin & Lethbridge, 2012). Created in 2008, Umple became an open-
source project hosted by Google Code in 2010. The word “Umple” takes its name from

three concepts: UML Programming Language; Simple; and Ample (Forward, 2010).

Umple is a textual language that adds Unified Modeling Language (UML) state
machines and class diagrams to well-known programming languages such as Java, PHP,
C++ and Ruby (Almaghthawi, 2013). In addition, Umple supports selected software
patterns and code tracing (Badreddin & Lethbridge, 2010). It generates high-quality
code for all the above-mentioned features and also generates diagrams, metrics, and
many other artifacts. It enables developers to draw or edit UML diagrams; thus, they

can move back and forth between diagrams and Umple code (Forward, 2010).

The goal of Umple is to reduce the gap between model-centric and code-centric
developers. It does this by allowing the modeler to model visually or textually while
allowing (code-centric) programmers to continue to program in the way they are used
to, but incorporating more abstract model-level features in their code (Forward, 2010).
One way of looking at Umple is that it enhances programming languages with model-
oriented syntax that raises the level of abstraction to better support designers'
intentions. In other words, the Umple textual syntax supports textual representations
of high-level system abstractions, as well as low-level algorithmic specifications, in the

same development artifacts at the same time (Badreddin, Forward & Lethbridge, 2010).

Umple's capabilities have been shown to enable developers to create programs
more effectively and efficiently (Forward, 2010) than using conventional code or model
diagrams alone. In particular, the system can be created with fewer keywords than

other object-oriented programming languages, such as Java (Forward, 2010).



2.2 Layered Architecture of Umple

As shown in Figure 2.1, Umple and systems written in Umple can be viewed in
the context of three metamodeling layers. These correspond to the OMG M2, M1 and M0
layers. The top layer (M2) is the Umple metamodel that has been defined in Umple
itself; this represents all the classes in the Umple compiler used to create and compile

models. The complete metamodel can be viewed at http://metamodel.umple.org.

The second layer (M1) is that of Umple models that are instances of the Umple
metamodel, and describe arbitrary software systems. These describe the Umple

elements, classes, associations, attributes, etc. that are part of any Umple program.

The bottom (MO0) layer is the elements which are instances of the Umple model
representing the objects, values, states, links, etc. found in a running program

(Almaghthawi, 2013).

Umple metamodel

— <~
describes instance of

> —

Umple model

— <t

describes instance of
Instances
> —
(Java, C++, Ruby ..etc)

Figure 2.1: Umple metamodeling architecture by Almaghthawi, 2013
2.3 Advantages of Using Umple
Software programmers and developers can benefit from using Umple because it

has several advantages over similar tools.

Umple is written in a textual form that is added to code in languages like Java
and C++. The addition of Umple code also means the program can be viewed as UML
diagrams. Therefore, Umple increases program comprehensibility. Existing tools tend

to separate diagrams from code, and reverse engineering to construct diagrams is often
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only approximate. A UML diagram of an Umple system is guaranteed to be complete

since there is always a direct mapping from the Umple to the UML.

Using a textual form of Umple allows users to develop the essential structures of
a system more quickly than with drawing tools because the text looks like
programming language code and can be typed and edited very rapidly. Moreover, when
using Umple’s web-based tool (UmpleOnline) to edit the Umple text, the changes are
immediately reflected as changes to the UML diagram. The user can also edit the UML
diagram itself, and the change appears immediately in the textual code (Lethbridge,

Forward & Badreddin, 2012).

Umple can work with existing libraries in several programming languages such
as Java, C++, Ruby and PHP. Users can extend existing classes even if they cannot see
the source code. Also, the user can write arbitrary code to call APIs of existing libraries,

as well as convert code written in any languages to Umple.

In addition, Umple supports generating readable, clean, and understandable
state-of-the-art code. It also supports the generation of several different high-quality
programming languages at the same time by maintaining language-independent files

for the models and linking them to language-specific code for algorithms.

One of the Umple guiding principles is that it has to be able to implement other
software patterns and other programming idioms besides UML concepts, such as
generating code for a singleton, immutable or delegation pattern. This has the
advantage of increasing the abstraction level of Umple (Lethbridge, Forward &

Badreddin, 2012).

Umple eliminates the need for writing boilerplate code (e.g., for constructs,
patterns, attributes and associations) because the Umple compiler generates such code.
This leads to reducing the number of lines of code to be written in Umple, resulting in a
more readable system so that users can better focus on the logical issues and critical
parts of their code, rather than the low-level technical problems. Also, eliminating the
boilerplate code reduces the likelihood of introducing bugs into the system by enabling

the user to write bug-free code for complex model constructs such as associations and



state machines in a consistent way.

Umple also eliminates the need for a ‘round-trip’ process. In Umple, the
generated code should not be edited or changed. If the generated code is not the type of
code the user wants, the user can embed traditional code into the Umple text, or they
can use Umple's aspect-oriented capabilities, which act to enforce constraints or change
the semantics of the program. Umple hence eliminates round-tripping, although it
supports code-to-model transformation by converting an existing system to Umple

(this Umplification process is still under development).

Umple bridges the gap between modeling languages and programming
languages. That is, it provides model-code duality. One of Umple’s main philosophies is
that it merges code and UML models. Umple allows developers to write a model-only
file, a code-only file for a target language such as Java or C++, or they can mix a model

with target language code in one file.

Umple provides synchronization between diagrams and corresponding text to
represent the same underlying model, which allows for interchangeable manipulation.
Also, it illustrates the strong relationship between a modeled system and its underlying

implementation (Forward, 2010).

A user can incrementally refactor (umplify) a program in a base language that
will pass through the Umple compiler unchanged by getting rid of complex code (for
constructs like associations, state machines and patterns) and replacing it with simple
Umple code. The user can do this little by little, testing at each step (Lethbridge,
Forward & Badreddin, 2010).

Figure 2.2 shows that model-to-code transformation is possible with no round-
tripping. Code-to-model transformation is also allowed, which is called “umplification”
(Almaghthawi, 2013). Umplification process is currently developed by Miguel Garzon
(PhD student working on the Umple Project).



Model+Code

Umple Umplification

Code

Figure 2.2: Umple model-oriented programming by Almaghthawi, 2013

As aresult of all the above, Umple reduces the complexity of software
engineering in such a way that it allows a developer to use a model-oriented
programming approach to develop and maintain a system rapidly and at a high level of
abstraction and hence to reduce the development time. The more Umple code is used,

the more compatible, reliable and maintainable is the resulting program.

Lethbridge (2013) states that Umple has a number of properties including
usability, scalability, and completeness that make Umple superior and more useful and

simpler than other modeling tools.

2.5 Umple Features and Properties
The following are the core features that can be added to systems written in

Umple:

1. UML classes: A user can define an object-oriented class, which is used as a type in a

system (CRuiSE, 2013) (Almaghthawi, 2013).

2. UML attributes: An attribute in Umple is an entity that stores simple data (in
contrast to an association, which stores data consisting of relationships). An
attribute value can be accessed, modified or constrained by using specific methods
associated with these attributes. Attributes in Umple are more abstract than fields

in Java (CRuiSE, 2013) (Almaghthawi, 2013).

3. Constraints: Umple can support both basic OCL-type constraints and preconditions

(CRuiSE, 2013) (Almaghthawi, 2013).
4. UML associations: An association is defined as the specification of a set of links
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between classes as a language primitive. It allows for a large amount of code for the
association to be generated in any of the supported programming languages (Java,
C++, PHP, etc.). Umple represents associations in one of two ways: in-line (in one of
the associated classes) or independently (outside either class). It generates
specialized code for reflexive associations and association classes (CRuiSE, 2013)

(Almaghthawi, 2013).

UML state machines: Umple allows an unlimited number of state machines in a
class, and an unlimited amount of state nesting. It allows guards written in the base
language, as well as entry, exit and transition actions. Do activities trigger
concurrent threads that can execute until an event arrives resulting in termination
of a state. Since state machines are the focus of this thesis, we will discuss them

more extensively later in section 3.1.11.

Software patterns: Immutable, delegation and singleton are supported as language

primitives.

Base-language methods: Umple enables methods written in a base language to be
embedded into the Umple program and passed to the compiler without being
changed or modified while the rest of the code is generated by Umple (Lethbridge,
2013). In fact, separate bodies for the same method can be given for each target

language.

Aspect-oriented code injection: Umple allows the use of before/after statements
to enforce conditions on attributes, associations, constructors and the components
of a state machine: A user or developer has the ability to inject code before or after
any method such as the event methods of the state machine (as the state machine
event methods are generated automatically from the state machine) (CRuiSE, 2013)
(Almaghthawi, 2013). The purpose of using this technique is that sometimes a user
or a developer wants some code to be executed when processing an event by a state
machine regardless of what state the state machine is in.

Mixins as a reuse mechanism: This allows code that is developed independently
to be injected into a set of classes. It also allows a user or a developer to compose a
state machine from many separate files. Since Umple supports that every class can

11



have an unbounded number of state machines where each of them can be defined
independently, an event in one state machine can trigger transitions in one or more
state machines. Also, the actions and guards can be defined independently as
simple functions that can be reused across a number of state machines or across
classes and components (Badreddin, 2010). In addition, the state machine mixins
can be achieved by defining a stand-alone state machine and then call the state
machine inside a class.

10. Tracing: Umple supports a tracing language called Model Oriented Tracing
Language (MOTL) that allows tracing and understanding the behavior of the
systems developed in Umple to debug, monitor, and analyze them (Aljamaan et al.,
2014). The advantage of using MOTL is to give a developer the ability to trace
different UML entities using trace directives without making any change to the
generated code (Aljamaan et al., 2014). It is a part of the Umple project that is
developed by Hamoud Aljamaan (PhD student working on Umple Project). In our
thesis, we have been able to benefit from the ability of MOTL to trace different
Umple state machines. Itis possible now to trace a whole state machine in Umple
by specifying a trace directive with the name of a state machine which results in
tracing all states of this state machine with any events and transitions (Aljamaan et
al, 2014). In addition, the developer can trace a whole state machine that can be
nested at several levels of depth or trace specific levels of substates. It is possible to
trace different elements of a state machine specifically as a developer determines.
For example, a developer can trace a certain state, transition, event, as well as
specific attributes that can be constrained to occur in a specific state (Aljamaan et

al, 2014).

Umple also supports importing and exporting of code to other forms of UML such

as TextUML and Papyrus XMI (Almaghthawi, 2013).

Figure 2.3 gives a small sample of Umple. This shows a state diagram drawn by the
UmpleOnline tool and the corresponding textual Umple form. This state machine is called
‘bulb’ and it has two states: ‘On’ and ‘Off’. The state machine has one transition causing the

state machine to transition from ‘On’ to ‘Off’ if the event ‘push’ is triggered.

12



. 1 class LightFixture
2 {
3 bulb
4 {
On 5 on {
6 push -> Off;
7 }
push 8 Off {
9 }
11 }

Figure 2.3: State diagram and Umple code as shown in UmpleOnline

2.6 Umple Tools

This section gives an overview of the current Umple development tools that are
available to support viewing, editing and compiling Umple files to create an Umple model

or system.

The key Umple tools are UmpleOnline, the command-line-based compiler, and an

Eclipse Plugin, each of which was created for a specific purpose.

Figure 2.4 illustrates how to use UmpleOnline to write or load a model that in

turns shows both textual and graphical representations of the same model.

u Draw on the right, write (Umple) model code on the left. Generate Java, C++, PHP or Ruby code from your models.
Visit the User Manual or the Umple Home Page for help. Download Umple Report an Issue
Line= 12 Create Bookmarkable URL
class LightFixture SAVE & RESET
bulb
on {
push -> Off; LOAD On
%ff { Class Diagrams %
¥ push
3 Select Example %
b
23 Choose from Off
Dropbox
DRAW
& Class

/" Association
X, Generalization
fij Delete

& Undo

GENERATE

OPTIONS

Figure 2.4: Textual and visual views of UmpleOnline
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A description of all three tools is provided below.

2.6.1 Umple Command-Line Compiler

The Umple language can always be used from the command line. The Umple
command-line compiler is preferred by traditional programmers who can use it to
compile Umple files and generate the target code (Lethbridge, 2013). This tool is
available as a Jar file and requires only an up-to-date installation of JVM Java 7

(Forward & Lethbridge, 2014).

An Umple file can be compiled using the command line by running this

command:
java -jar umple.jar *.ump

Where * indicates the name of the Umple file and .ump indicates that code is
written in Umple. As in a standard compiler, several files can be specified on the

command line if desired.

Running this command compiles the Umple file and returns a notification

message. If it compiles successfully, the message will be:
*.ump
Success! Processed *.ump.

If the compiler fails to compile the file, an error message is produced indicating
the line on which the error occurred. For instance, to compile the Umple file saved as
“LightFixture.ump” that is shown in Figure 2.4 using the Umple command-line

compiler, we would run this command:
java -jar umple.jar LightFixture.ump

However, suppose there is a mistake in a state machine’s syntax, such as

forgetting to put a semicolon after the state “Off” in line 8 (push -> Off).

In tis case, the compiler will still compile the program but it will consider the
state machine’s code as ‘extra code’ and a warning message will be presented to
indicate that there is likely something wrong at a specific line number. For instance, the
warning notification in the above case is as follows:

14



LightFixture.ump

Warning 1006 on line 8 of file LightFixture.ump":

State machine syntax could not be processed. It has been

considered as Extra Code
Success! Processed LightFixture.ump.

‘Extra code’ means that Umple believes the construct might be syntax from the

base language (Java, C++ etc.), so it passes it through to the output files.

Suppose the error made is forgetting to put a closing curly bracket ‘}’ at the end
of the program. In that case, the compiler will fail to compile the program and an error
message will be displayed showing the specific line number and file where the error

occurs:

LightFixture.ump

Error 1502 on line 3 of file LightFixture.ump":

Parsing error: Structure of 'class' invalid

Processed LightFixture.ump.

2.6.2 Umple as an Eclipse Plugin

Umple is available as an Eclipse Plugin that can be used like any other compiler
in Eclipse and can be merged with other Eclipse-based modeling tools (Lethbridge,
2013). This gives developers the full power of the Eclipse environment while using

Umple (Lethbridge et al., 2014).

2.6.3 UmpleOnline

UmpleOnline is a web-based tool that supports interactive editing of Umple both
graphically and textually, ensuring that UML diagrams are kept synchronized with the
Umple text (CRuiSE, 2013). In addition, it allows generation of high-quality code from
Umple directly in a web browser to different programming languages and to various

artifacts supported by Umple.
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The center pane of UmpleOnline allows users to use Umple to load and save
their models or Umple code (their work). It also enables them to explore various

examples of Umple for models of different systems.

Furthermore, UmpleOnline allows users to type any Umple code into its left
textual pane. Three seconds after the user stops typing in the pane, Umple will
interpret the code and draw a corresponding class diagram in the right-hand graphical
pane (Forward & Lethbridge, 2014). The text editor provides “syntax-assist,” which
helps users keep their code indented correctly as they type Umple text by highlighting

matching parentheses and Umple keywords.

The right-hand graphical pane of UmpleOnline allows users to add a class on the
canvas. They can also add attributes, generalizations, and associations. Several diagram
formats are available including automatically-laid-out class diagrams, editable class

diagrams, and automatically-laid-out state diagrams.

The bottom pane of UmpleOnline has a button to generate code and many other
types of output. It shows the errors and warnings that may appear at the bottom of the

page as users edit their text or diagrams (Almaghthawi, 2013).

UmpleOnline was created for several purposes. It is an effective tool used for
educational purposes. Educators and students are not required to install UmpleOnline;
they can access it if they have a browser and an Internet connection. In addition, they can
install a local version of UmpleOnline and manipulate Umple files on their computers
through a web browser (Almaghthawi, 2013). It has a variety of examples of complex
models for different systems. In addition, they can create their own examples and
models, save them on the server and then reload them later using bookmarks
(Almaghthawi, 2013). Because of these features, it is recommended that software
educators use UmpleOnline as a tool for teaching and demonstrating various UML
design alternatives, and for showing the implication those designs have on the

generated code of those alternatives (Forward, 2010).

In addition, UmpleOnline is considered to be a good demonstration tool. Once a

model is created using UmpleOnline, one can see a view of both the visual and textual
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representations of the same model (Forward, 2010). It can also be used to explore ideas
quickly, giving the developer the ability to create rapidly and simulate basic models
(Forward, 2010). A developer can also create a complicated model of a real case study
using UmpleOnline, and initiate small projects (Lethbridge, 2013). Besides,
UmpleOnline is an excellent tool for preparing professional-looking diagrams ready for

publication (Forward & Lethbridge, 2014).

2.7 Umple Architecture

The Umple compiler acts like any other programming language compiler; it is
tested and built in the same manner. In fact, the Umple compiler was written in Java
and then rewritten in Umple itself (Forward, 2010). There are few tools that build their
own compilers using their own languages; one example is the Pascal compiler, which
since the mid-1970 has been written in Pascal (Cantu, 2008). In 1962, Hart and MIT
developed the first self-hosting compiler for Lisp in Lisp itself (Hart & Levin, 1962).

Writing a compiler in the same language that is developed shows that this
language can provide utilities that may not be found in the “base” language of the
compiler and these features are well-suited for the compiler. For instance, most
behaviors can be implemented using the abstract level of the Umple language where
UML constructs can be used as well as other patterns, etc. It can be much easier to
maintain the compiler when the same language is properly used demonstrating the
usefulness of the tool. Moreover, writing the Umple compiler in itself helps the
developer to customize and extend the language using high-level abstraction
constructs.

The Umple compiler consists of several well-defined internal components
including an Umple parser, which is the analyzer that helps the Umple compiler to
parse the input Umple code into tokens, the Umple metamodel classes, which are the
internal representation of Umple in which the tokens are used to populate and generate
instances of the Umple metamodel from the parse tree, as well as several code
generators used to generate various target base languages such as java, C++, PHP, and
Ruby. Also, model-to-model transformation engines are used for generating the models

of the systems built using Umple, and a synchronization engine that allows the
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diagrams to be edited and then the resulting changes to apply to the text (Forward,
2010).
Figure 2.5 below illustrates the high-level components of Umple model

processing.

Umple

Umple Populated Generated
Grammar VB meta-model Code Artefacts
Generator

Figure 2.5: Umple well-defined components as shown by Badreddin, 2010

2.8 Development of Umple

The Umple language and processing tools were developed following a
combination of agile, continuous integration, model-driven development, and test-

driven development approaches to ensure that it provides high quality and flexibility.

Umple was developed in small iterations and increments that are compiled and
frequently integrated. In addition, model-driven development is used to allow adding
UML constructs to base languages besides generating high-quality object-oriented
programming languages and other diagrams and artifacts. A test-driven development
approach enables testing those components at multiple levels so that a fully tested and

functional system is obtained.

2.8.1 Agile Development

Umple is developed using an agile method; a software development
methodology that depends on iterative and incremental development combined with
continuous integration and test-driven development approaches. The agile method has
the idea of developing a system through repeated cycles and in small portions at a time,
allowing developers to benefit from feedback during development, especially in earlier
versions of the system (Dingsgyr, Dyba & Brede Moe, 2010). Design modifications are

made, and new functionalities are added at each iteration of the development.
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2.8.1.1 Agile Philosophy

The agile method is adaptive rather than predictive which means that the agile
approach allows for a quick adapting to changes in requirements, and solutions evolve
across collaboration between teams (Bakal, Althouse & Verma, 2012). Itis also people-
oriented rather than process-oriented where the role of the process is to support the
development teams in their work not building their skills (Bakal, Althouse & Verma,
2012). In addition, the agile development method is based on an iterative approach in
which the development tasks are broken in small portions with minimal planning. Each
development task is allocated to a short timeframe called an iteration or sprint, and
each iteration involves working in all stages: requirement analysis, design, coding, unit
testing, and acceptance testing. The testing in an agile manner is usually done in
parallel with coding or starting in early iterations of development life cycle, not in the
last phase of the development life cycle as in the waterfall manner. In contrast, the
waterfall model follows a sequential design process in which a separate testing phase is
done upon the completion of the implementation phase (Dingsgyr, Dyba & Brede Moe,
2010).

In addition, the agile development methodology is an incremental approach in
which each rapid iteration results in producing small software release (Dingsgyr, Dyba

& Brede Moe, 2010).

The aim of the agile development methods is to enhance the quality of the
system that can be achieved by dividing the development tasks into small units. So the
team can produce frequent builds and perform intensive testing during each iteration
which results in detecting and fixing bugs in a rapid manner. Therefore, the agile
method focuses on high-quality development, testing, and collaboration between teams

(Dingsgyr, Dyba & Brede Moe, 2010).

Continuous integration and test-driven development are two agile practices and
tools that cover various areas such as requirements, design, modeling, coding, testing,
etc. are used to improve the quality of systems and enhance the system agility (Bakal,

Althouse & Verma, 2012).
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2.8.1.2 Advantages of Agile Methodology

[t reduces the overall risk and allow for rapid and flexible response to changes,
which means that it makes it possible to add new features or implement new changes
to the system because of the frequency of new increments produced. It also encourages
teams to have face-to-face communication to discuss progress and get rapid feedback of
what they have done, what they are doing, and what they will do in the future. Also,
they discuss the features to be newly added or removed and the changes to be

implemented based on changing requirements (Dingsgyr, Dyba & Brede Moe, 2010).

Further, the methodology of agile development results in a high-quality system
with minimal bugs and defects because the system is tested intensively during the
iterations of the development life cycle, which is achieved in least possible time. The
agile method is more about coding rather than documentation (Dingsgyr, Dyba & Brede

Moe, 2010).

2.8.2 Continuous Integration

Continuous Integration (CI) is a software development practice created for agile
development that requires members of the team to integrate their changes to a larger
code base frequently, often multiple integrations per day. These integrations are then
verified through an automated build and testing to detect integration errors (Bakal,

Althouse & Verma, 2012).

The goal of continuous integration is to reduce the risk of having an extended
and difficult integration. This helps to get rapid feedback as the automated build for
verifying the integrations helps in detecting integration errors as quickly as possible so
that, if a defect is detected in the code base, it can be rapidly identified and corrected.
The detecting of defects early in development leads to easily resolution of smaller and
less complex defects (Rouse, 2008). Therefore, continuous integration helps reduce the
problems of integration and enables development team to develop cohesive software

more quickly (Bakal, Althouse & Verma, 2012).

2.8.3 Model-Driven Development (MDD) Methodology

Model-Driven Development (MDD) is an approach in which models are used as
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specifications of software system in which the essential aspects of software are
expressed. The models are then transformed in order to get corresponding source
code. The transformation of the models constitutes the core of software development
(Beydeda & Book, 2005). For example, a model transformation can facilitate the
process that converts between different views of the system at an equivalent level of
abstraction, or converts models between levels of abstraction, usually from a more
abstract to less abstract view by adding more details supplied by the transformation
rules (Beydeda & Book, 2005). The word ‘driven’ in MDD indicates that this approach
enables models to be given a central and active role because they are at least as

important as source code (Volter et al,, 2013).

MDD is a less precise but common name for the discipline called model-driven

software development (MDSD) (Volter et al.,, 2013).

Mellor et al. (2003) point out that the main idea behind MDD is to model a
system at several layers of abstractions and from different views (as cited in Parviainen
etal,, 2009, p. 10). The models that are created for the system become the main
artifacts of software development. By using generators or executing the created models

at run-time, these models are transformed into running systems.

Models, modeling, and model-driven architecture (MDA) are considered the

three basic concepts of the MDD approaches (Beydeda & Book, 2005).

Creating models for a software system is useful to identify a problem domain
and design a solution in the solution domain. MDD models are abstract and formal at
the same time. They have an exact meaning like programming code (Volter et al.,

2013).

In addition, identifying relationships between the created models offers a
network of dependencies that mark the process in which a solution is created, and also
it assists in recognizing the implications of modifications at any point in that process

(Beydeda & Book, 2005).

In MDD, the created models do not create documentation for software but they

are considered to be part of the software, and they are equal to source code because of
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the automation of their implementation (Volter et al.,, 2013). Moreover, defining a set
of rules is required in order to automate many steps needed to transform one model
representation to another, to trace between model elements, and to analyze essential

features of the models (Beydeda & Book, 2005).

MDD targets finding domain-specific abstractions and enables accessing them
through formal modeling (Volter et al., 2013). Volter et al. (2013) illustrate that there
are three requirements that are required to be achieved in order to apply the "domain-

specific model' concept; they are:
- Domain-specific languages are needed to enable the actual defining of models.
- Model-to-code transformation languages are needed.

- Inorder to run the transformations to generate executable code on various

platforms, compilers, generators or transformers are needed.

By using models to represent the software and visualize the code and the
problem domain, MDD intends to speed up the software development and makes it
more cost efficient. MacDonald et al. (2005) state that MDD also aims at separating
implementation technology from the business logic of the program (as cited in

Parviainen et al., 2009, p. 10).

MDD implies more precise and clearer views of aspects while dealing with
software development paradigm. It gives a clear description of the meaning of models,
the separation of the domain-specific and technical implementation, the relationship
between design and implementation, round-trip problems, architecture and generation,
versioning and tests that if it is applied correctly, it will make the work of the developer
much easier, and it will help avoid redundant code and improve software quality by

using formalized structures (Volter et al., 2013).

According to Duby (2003), Object Management Group's (OMG) Model-Driven
Architecture (MDA) is referred as software systems modeling, and it is a well-known
example and standardization initiative of OMG focusing on MDD (as cited in Parviainen
etal., 2009, p. 10). OMG works as an industry-driven consortium to develop standards

for the implementation of MDD. MDA depends on a set of emerging standards to define
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a set of models, notations and transformation rules (Beydeda & Book, 2005). The idea
behind developing MDA was to allow the specification of system functionality (i.e. the
processing and logic of the system) to be separated from the specification of its
implementation technology. It then enables developers to focus on solving the problem
rather than the dealing with the details of the implementation technology (as cited in
Parviainen et al., 2009, p. 10). MDA as a way of modeling has several advantages

because it enhances the quality, efficiency, and predictability of software development.

France & Rumpe (2007) state that MDA demonstrates the modeling of the
system from three viewpoints (as cited in Parviainen et al., 2009, p. 11). The
computation independent viewpoint is about the required features of the system, as
well as the environment in which it operates. It results in computation-independent
models (CIM). The platform independent viewpoint is concerned with the features of
the system that are fixed and do not change as the system is used on different
platforms. It specifies what the system does, and it results in platform-independent
models (PIM). The integration of PIMs with the platform-specific details in the
platform-specific viewpoint results in platform-specific models (PSM) that describe

how the system is implemented.

2.8.3.1 Advantages of Model-Driven Development (MDD)

Mellor et al. (2003) argue that models can be used to increase productivity
because building a graphical model using Unified Modeling Language (UML) is cheaper
than writing functional code in Java, for example; however, using models may raise the
degree of obstacles (as cited in Parviainen et al,, 2009, p. 11). The list below shows that

adopting MDD has several advantages.

According to Volter et al. (2013), MDD enhances the quality of software and

helps improve the manageability of software complexity.

Regarding Umple, it supports MDD by allowing the developer to present and
maintain a complex system as a model either textually or graphically, and then generate

high-quality code from that system (Lethbridge, 2013).
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2.8.4 Test-Driven Development (TDD) Methodology

Test-driven development (TDD) is an agile software development process that
consists of a set of short development cycles or iterations (Patrick, 2006). It has been
widely used within the agile process. It is a well-known development process used for
open-source software projects; particularly ones concerned with adaptation of agile
principles for continuous integrations of the system development which results in more
manageable and understandable code (McConnell, 2014). This process is performed in

short, and rapid iterations (Janzen & Saiedian, 2005).

The TDD approach results in enhancing the quality of the design and makes it
easier to work with it in the future. In fact, TDD helps drive the design specification as

well as directly validating it (Ambler, 2012).

The TDD process requires writing a set of automated tests, which, when first
written, are expected to fail. The system is then changed so they pass. The automated
tests become an aspect of the system'’s specification and a primary component of the
system documentation; they are executed with every subsequent system change,
providing rapid feedback about any bugs or unexpected side-effects of subsequent

changes to the system. (Janzen & Saiedian, 2005).

Test-driven development was developed initially by Kent Beck (2003), and it has
become widely accepted as a methodology in the software development community in
combination with agile process models and the Extreme Programming (XP). Both agile
process and test-driven development (TDD) are considered as basic methods working
on iterative, incremental and evolutionary basis in the modeling process. In 2002, Beck
claimed that following TDD for developing a system leads to simpler designs and

increases the level of confidence.

An automated unit testing framework for Java called JUnit was developed by
Erich Gamma and Kent Beck to implement TDD with Java. Implementing JUnit-like
frameworks for various languages leads to creating a family of frameworks called xUnit,
which enables programmers to write numbers of automated unit tests in order to

initialize, execute, and make assertions about the code needed to be tested (Janzen &
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Saiedian, 2005). Writing xUnit automated tests in the same language as the code under
test results in allowing these tests to serve as first-class clients of the code, while the
tests themselves actually serve as specification and documentation for the code. The
test order does not matter because individual tests are written to be independent of
one another. In addition, xUnit frameworks allow programmers to report the total

number of successes and failures (Janzen & Saiedian, 2005).

According to Beck (2002), there are two main rules driven from adopting and

using the test-driven development process:

1. Writing new code to enhance the functionality of the system only if an
automated test written for this code has failed, and
2. Refactoring both the production code and test code to remove any duplication

that may occur (Beck, 2002).

These above two rules drives the TDD mantra that is "Red-Green-Refactor." The
“Red Green Refactor” mantra refers to a process that indicates that using the TDD
methodology enables focusing on small steps for writing software. It ensures that the
process ends up with high-level productive and confident system by enhancing the

production code (Boydens, Cordemans & Steegmans, 2010).

The development micro-cycle of TDD is visually shown in figure below:

| Create Test |

v

| Red bar |

Green bar |

v

Refactor |

|

Figure 2.6: Test-driven development (TDD) cycle: Red-Green-Refactor by Boydens,
Cordemans & Steegmans, 2010
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Figure 2.7 illustrates steps that are driven by the above principal rules of TDD:

&4—

(Re)write a test case

v

Run all tests and
check if they fail

Write production code
to make a test passes

v

Run all tests to
check If they pass

Refactor and clean up
code

Figure 2.7: A graphical representation of the necessary steps for the test-driven
development (TDD) cycle, using basic flowchart

2.8.4.1 Benefits of Test-Driven Development (TDD) Methodology

TDD is suitable for developing large systems where there are large numbers of
developers working on developing and implementing the systems. This results in a
large number of functional code lines and test code lines that would be running in a

short time (Forward, Badreddin, Lethbridge & Solano, 2012).

In fact, TDD makes it easier for new developers to contribute to the software.
This process supports adding a minimum code that is enough to make tests pass rather
than writing a large number of lines for functional code which as a result can help
detecting and resolving defects whenever they exist (Forward, Badreddin, Lethbridge &

Solano, 2012).

In addition, TDD leads to improved code quality by enabling continuous
regression testing (Beck, 2003). That is, automated unit tests will be run when the code
is enhanced or maintained to detect and identify any new defects, as well as to control

the uniformity of software releases (Beck, 2003).
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To sum up, following TDD for developing and implementing software leads to
improving quality, reducing debugging effort, promoting simplicity (Forward,
Badreddin, Lethbridge & Solano, 2012), and enhancing flexibility of the software
systems (Karai, 2009).

2.8.5 Benefits of Using a Combination of Agile, Continuous Integration (Cl), and Test-
Driven Development (TDD) Methodologies

The continuous integration (CI) approach provides some improvements over
classic agile development. It allows development teams to be agile in response to rapid
changes and at the same time it helps the teams to work effectively and efficiently in
their domain. Whenever they have completed a change, their contributions are
integrated, and components work well together. If there is a problem or if the
component is not integrated correctly, tests created through test-driven development

help discover and fix the problem quickly (Bakal, Althouse & Verma, 2012).

2.9 Building the Umple System Using a Test-Driven Development (TDD)

Strategy

2.9.1 Umple Testing Infrastructure
The Umple development system includes several components; the Umple parser,
the Umple metamodel, and several code generators used to generate various target

base languages such as java, C++, PHP, and Ruby (Forward, 2010).

Currently, there are more than 3445 test cases that cover testing all the
components of the Umple infrastructure, ensuring that they go through all the four
levels of testing: parsing, metamodel, template, and semantic testing. A summary of

tests can be seen at http://qa.umple.org

Therefore, testing the Umple infrastructure is done at several levels, which can

be summarized as follows:

1. Parser testing: the testing process in Umple starts with this level to ensure that
the Umple Abstract Syntax Tree (AST) is built correctly in order to be parsed
into tokens (Almaghthawi, 2013).
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2. Metamodel testing: the testing at this level is to verify that the metamodel of
Umple is constructed from the Abstract Syntax Tree (AST), that s, the tokens
are used to populate the metamodel properly (Almaghthawi, 2013).

3. Template or code generation testing: this testing is to check that the
generated code such as Java, C++, PHP, and Ruby, is syntactically correct
according to the languages’ syntax, and it matches what is expected.

4. Language-oriented semantic or testbed testing: in this phase, the testing is to
verify that the generated code behaves properly and correctly according to our

expectations, and some other tool-oriented testing (Almaghthawi, 2013).

Essentially, in our work, we were interested in doing all types of testing to test
the features we added to Umple state machines, which are queued state machines,
pooled state machines and the unspecified reception handling mechanism (more
details about these features are illustrated in Chapters 4 and 5). As we needed to
modify the Umple grammar and Umple metamodel to accommodate the changes, we
added a number of test cases to ensure our Umple code was parsed correctly and
generated the tokens from adding the new keywords. Also, we added more test cases
to ensure that the metamodel instance populated by processing these tokens was
correct. Also, we wrote test cases to ensure that generated code from given Umple
programs was valid, which in our case was Java code, and it was syntactically correct as
we compared the expected code versus the actual code. Regarding these tests, we
ensured that the syntactic translation of the Umple metamodel instance into the
generated base language was correct. Finally, we added test cases to the Java testbed of
Umple code in order to ensure that the generated code was semantically correct and
behaves as expected. Therefore, this shows we went through all the levels of tests for

our thesis.
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Figure 2.8: Umple testing infrastructure by Almaghthawi, 2013

Figure 2.8 shows the different levels of the Umple testing process, and it

illustrates that the first three levels are done within the scope of Umple.

As illustrated in Figure 2.8, the first three levels of the Umple testing process are
done within the scope of Umple, which means that we are only capable of testing

Umple, not the set of possible systems built using Umple.

2.9.2 Test-Driven Development Methodology (TDD) and Umple
The development process of Umple follows an agile approach that prompts an
iterative and incremental software development throughout the life-cycle development

of the Umple infrastructure.

The earliest versions of the Umple compiler were written in Java, then the latest
versions of Umple were written using Umple itself in a model-driven development
fashion. Figure 2.9 shows an example of the continuous integration process of Umple

that depends TDD (McConnell, 2014).
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1. A set of changes 2. New build is run 3. Another set of 4. New build is run, 5. Changes are 6. New build is run,
are committed to all tests pass changes are all test DON'T pass committed to issue |s resolved
the code base build is successfu committed to build fails fix the isssues all tests pass,

[ the code base breaking the build is successful

build I

@ A2 -

Figure 2.9: Umple continuous integration process relies on TDD by McConnell, 2014

As shown in the figure above, the development of Umple goes through several
procedures. If an error occurs while a set of changes are committed to the source
repository causing a build failure (some test does not pass), then immediate action
must be taken by committing other changes to the source repository in order to fix the
issues that break the build. Committing these changes should be made before
committing or integrating any other changes to the repository. Then a new build is run
automatically, hopefully showing that the build is successful, and all issues are resolved,

as all tests pass (McConnell, 2014).

A brief description of how we can integrate new tests and make a change in

Umple is listed in (Lethbridge, Forward & Badreddin, 2012).

All the automated tests in Umple must pass 100% after running the build. Once
we run the tests automatically including a full build, we can see an automatically
generated website with all the test results which enable us to find failing tests if there
are. This results in assuring the quality of the code. This web page is located on the

build server at: http://ga.umple.org (Lethbridge, Forward & Badreddin, 2012).

Unit Test Results.
Designed for use with JUnit and Ant.

Summary
Tests Failures Errors Success rate Time
3684 0 0 100.00% 40.659

Note: failures are anticipated and checked for with assertions while errors are unanticipated.

Figure 2.10: Umple automated testing report
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Currently, there are over 3680 tests that cover all areas of the testing process of
Umple. The automated quality process is used to run these tests to ensure they all pass

and the model and code are consistent as illustrated in Figure 2.10.

Following the TDD approach to develop Umple brings many benefits to Umple.
The process that follows TDD is not just about testing, but also about designing the
system in a modular fashion. It is also about capturing the intention of the software or
automated tests that can be easily verified by re-running the test suit so that little effort
is wasted. Itis much better than the act of manually testing and modifying or
debugging an application until it works which will just benefits the developers
(Forward, 2010). Capturing the testing process through automation enables all
developers to benefit because the knowledge gained about true behavior of the system
can be easily re-run and re-verified. In addition, we can capture the debugging effort of
a new code generation behavior in our automated tests and then change the underlying
Umple language to replicate that behavior natively because Umple is implemented in
itself (Forward, 2010). Moreover, following TDD enables contributors to Umple to
make sure that the code produced for implementing a new feature is reliable and
maintainable, and also TDD makes it easier for new developers to contribute to Umple
in the future (McConnell, 2014). Also, following this approach ensures a high quality to
the Umple infrastructure since it ensures that 100% tests pass which means there are

fewer errors, bugs, and a more enhanced system.

In addition, writing automated tests first during the development cycle allows
developers of Umple to:

- Plan changes needed to implement a new feature or to enhance the existing
feature prior to the actual implementation of this feature.

- Make sure that the changes produce the expected behavior.

- Thoroughly test the changes on the local environment of the developer before
committing those changes to the source repository.

- Ensure that there is no side effect of those changes on other areas of the source

code of Umple.
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Chapter 3 Literature Review

In this chapter, we discuss several technologies and languages that are relevant
to this thesis. We start by discussing communication protocols; since they are a major
application of our work, and we discuss a variety of languages that can be used to

represent them, including SDL, Spin, and UML state machines.

3.1 Protocols and Formal Description Techniques (FDTs)

Communication protocols (simply called protocols) are sets of conventions and
rules used to govern and control communication within or between different entities
and processes of a distributed system or computer network. They govern the meaning
and format of messages, packets and data exchanged within or between entities of a
system, either by peer entities within a layer or by entities between different layers of a
distributed entities (Venkataram, 2014).

The description of a protocol has an important role in all stages of a protocol
design (Bochmann & Sunshine, 1980). According to Bochmann (1990), due to its
essential role in the development life cycle of a distributed system, protocol
specification is developed in connection with communication services throughout the
design of the system. As illustrated by Bochmann and Sunshine (1980), the protocol
specification describes the internal structure of the protocol, which means that it
describes the operation of each entity within a layer such as internally initiating actions
such as timeouts, and also the response of inputs and messages from its users and the
other entities through the lower layer service.

The protocol specification needs to be validated in order to derive large parts of
code for all implementations of system components (Bochmann, 1990) that
concentrate on the real coding of the protocol. According to Venkataram (2014), this
can be achieved by following software engineering aspects. The protocol specification is
also used as a reference during the implementation phase in order to select test cases
for conformance testing and test result evaluation (Bochmann, 1990).

There are two ways for describing and defining communication protocols and
distributed systems: informal and formal methods. The design and development of
communication protocols using the informal or formal methods involves the
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specification, validation, and implementation of the protocols (Venkataram & Manvi,
2005). Some informal methods are used to describe and represent the communication
protocol such as representing the sequence of message exchanged using Message
Sequence Chart (MSC) or a flowchart (Venkataram & Manvi, 2005).

As these informal methods have some drawbacks, several formal specification
and description languages (FDTSs) are used to overcome those disadvantages and to be
used for the descriptions of distributed systems and communication protocols.

Due to the increase of complexity and variety arising from protocols that govern
data communication in distributed systems, computer networks, and communication
technologies, the communication protocols have become harder to design, understand,
and analyze. Therefore, formal description techniques (FDTs) such as SDL, Estelle, and
LOTOS have been developed for different reasons, and they have been applied in
various domains. They were used for developing and designing the description of
distributed systems and communication protocols to handle that complexity
(Bochmann, 1990, p.167).

Venkataram and Manvi (2005) defined the formal description techniques (FDTs)
as methods that are used to facilitate the protocols design and implementation in a
quick and sufficient way. The formal description techniques (FDTs) are mathematically
based techniques that introduce strictness and reliability into the different steps of the
protocol development process (Babich & Deotto, 2002).

According to Babich and Deotto (2002), the purpose of using the formal
description techniques (FDTSs) is to simplify the process of designing, validating, and
implementing the development process of communication protocols. They also aim to
speed up the process of developing a communication protocol and to ensure the final
implementation is consistent and conforms to its specification. FDTs show how they
can be used in conveniently managing the development process of communication
protocols that results in producing highly reliable software.

FDTs do not replace the traditional informal methods for developing the
communication protocols, instead, they integrate with them with deeper understanding
of the system’s behavior, early detecting and handling of error, clear documentation of

the process, and mathematical correctness proofs for high-integrity systems (Babich &
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Deotto, 2002).

FDTs are based on two basic approaches. They can depend on some theoretical
models or they can be specified by using high level programming language
(Venkataram, 2014). Also, a hybrid models can be used for designing and developing of
communication protocol.

The various description techniques used to define different behavior features
described above are state transition models including finite state machines (FSM),
communicating finite state machines (CFSM), and Petri nets, formal grammars, and
algebraic calculi which are used for describing the specified behavior of the
communication protocol and distributed systems (Bochmann, 1990). The other
languages used for the same purpose besides describing the structure of the protocol
specifications are high-level programming languages, abstract data types, and temporal
logic (Bochmann, 1990). In addition, hybrid models such as extended finite state
machine (EFSM) can be used, which are defined as different extensions added to some
of the formal specification languages such as FSM by combining them with high-level
programming languages or abstract data type to describe parameter values
(Bochmann, 1990). Moreover, there are some language standards used for the design
and implementation of communication protocols such as specification and description
language (SDL) (based on FSM combined with more extensions), UML statecharts (an
object-based variant of Harel statechart (Harel, 1987) that is extended by UML) (OMG,
2013), Estelle (based on EFSM combined with extended Pascal), and LOTOS (based on

Calculus of Communicating systems CCS) (Bochmann, 1990).

3.2 Finite State Machine (FSM)

Finite state machine (FSM) is a powerful and simple model that captures the
essential behavior of a large set of systems such as communication protocols and
control systems (Bochmann, 1978). FSMs have also been used for modeling reactive
systems, hardware digital systems, software engineering, compilers, network protocols,
and study of computation and languages (Harel, 1987). Bochmann (1978) provided a
systematic analysis of the behavior of two FSMs communicating with each other. One of

the possible communication mechanisms is “direct coupling” where each component
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has specific types of transitions that are directly coupled with transition types in the
other component in the system (Bochmann, 1978).

The other communication mechanism described by Brand and Zafiropulo (1983)
is that the processes can be modeled explicitly using FSMs, and the channels can be
modeled implicitly using queues that have unbounded capacity that allows for an
arbitrary messages in transit.

There are two categories: Mealy and Moore FSMs. They are theoretically similar
but practically have different characteristics (“Finite State Machines,” 2001).

Each transition of a Mealy machine has an input interaction and an output
interaction, and its current state and current input interaction uniquely determine the
value of its output interaction (Mealy, 1955). In other words, when the machine is in
the state, and an input interaction (event) arrives that matches the input interaction
labeled on a transition, then this transition will be executed. It causes the machine to
transition to a new state, and the output interaction (which later came in UML to be
called the transition action) will be produced. The output becomes the input to another
FSM (i.e. the output of the machine is a signal/event) (Bochmann, 2008).

In a Moore machine, its output interaction (which came to be called in UML the
do action) is based only on the state rather than the transition, which means that the
output is not produced during the transition (Moore, 1956). Instead, the Moore
machine produces a continuous output (i.e. a continuous value) depending on the state
(Bochmann, 2008).

Unified Modeling Language (UML) and Umple can handle both machines
because they can have actions associated with transitions and do-actions in states that

may produce output values.

3.2.1 Advantages of Finite State Machine (FSM)

The importance of using FSM model is that it describes a protocol as a state
machine at a low level of abstraction that can be easily understood (Holzmann, 1991).
Also, using FSM to specify the protocol means that each process in the system makes

about the others.
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The finite state machine (FSM) model is an easy-to-use graphical language,
which makes it an effective and convenient model (“Finite State Machines,” 2001).
Additionally, the finite state machine (FSM) allows for defining all external and internal
events that the system may respond to which means it spends more time on designing
before coding (Bollig, 2006). This allows for easily modifying a program if there is any
need to do so such as adding new features to its states (Bollig, 2006). Also, it allows for
easily testing a program because the testing can be broken down into small tests for
each state, which leads to high-quality system (Bollig, 2006). Besides, the finite state
machine (FSM) can be used to model concurrency in a system (i.e. each FSM describes a
concurrent component of the system) (“Finite State Machines,” 2001).

Modeling by a finite state machine approach is used to check specification and
validation of communication protocols (Bochmann, 1978). Using a formal specification
method is effective for the validation, testing, and implementation of such protocols
(Bochmann, Gerber & Serre, 1987). This process allows for a formal analysis of
protocols before their implementation. It verifies that the protocol specification realizes
the service specification and checks that the protocol specification is free from design
errors such as deadlocks and unspecified receptions.

In order to verify the design of two or more state machines communicating by
asynchronous messages passing, a global behavior is driven from the behavior of these
communicating state machines. This is called reachability analysis- it determines the
global behavior and identifies all global system states that are reachable from the initial
state of the system. Automated tools, such as Spin have been used for this purpose.

During reachability analysis, the following design errors may be detected:

* Unspecified receptions
* Deadlocks: all processes wait for a message while none is in transit.
* Non-executable transitions and/or states: transitions that will never be

executed, or states that will never be reached.

3.2.2 Representation of Finite State Machine (FSM)
A finite state machine (FSM) is represented in some different ways that are

considered to be useful for various purposes. One of these ways is a transition table,
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which is used to describe some algorithms and systems operating on finite state
machines (Saunders, Coulson, and Folse, 1992). The rows of the transition table
correspond to the states of the machine, and the columns correspond to the input
symbols that may occur. The entries in the table are the next states that the machine
enters and receives the given inputs. In addition, the table represents the output
symbols corresponding to the transitions of the transition-assigned (Mealy) machine
(Saunders, Coulson, and Folse, 1992).

Even though the transition table is practical for describing some aspects of the
system, the visualization of a finite state machine is more human-oriented
representation (Saunders, Coulson, and Folse, 1992). A representation named the state
transition diagram is a labeled graph that visualizes and depicts a state machine by
representing its states as nodes and its transitions as arcs. In the state transition
diagram, each arc is labeled with an input symbol that causes the transition. It may also
be labeled with an output symbol that is produced by the transition given that the
machine is transition-assigned (Mealy) machine (Saunders, Coulson, and Folse, 1992).

To illustrate, the state transition diagram shown in Figure 3.1 represents a
transition-assigned (Mealy) machine (Saunders, Coulson, and Folse, 1992). It has four

states (q0, q1, q2, g3), two input symbols (0, 1), and four output symbols (0, 1, 2, 3).

0/0 0/3
) 1/0
q0 )° q0
1/1 1/3
q0 » a0
1/2
0/1 0/2

Figure 3.1: State transition diagram as shown in UmpleOnline
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The transition table shown in Table 3.1 represents the state machine depicted in
Figure 3.1. The columns of the table represent the input symbols, and the rows

represent the states.
Table 3.1: A transition table

0 1
q0 q0/0 ql/1
ql ql/1 q2/2
q2 q2/2 q3/3
q3 q3/3 q0/0

3.2.3 Extended Finite State Machine (EFSM)

As a simple state machine provides limited features that may not be suitable for
complex models, an extended finite state machine (EFSM) is introduced to allow more
formal concepts and features (Bochmann, 2013).

As explained by Bochmann (1978), the two main limitations of a finite state
approach are the explosion of state space and the inheritance in the finite state
modeling of the transmission medium. The first problem can be resolved by using some
validation tools. The second problem is useful only if a small number of messages exist
in transit. The proposed solutions for these limitations as explained by (Bochmann,
1978) is to use the proposed method that combines both a finite state machine model
and the assertions of high-level programming language. That allows for an extension to
a finite state machine by using regular expressions to model message queues without
enforcing a limit on the number of messages in transit.

One of these concepts is to allow state machine input and output to have
parameters; thus, an event can be a signal, a change in some condition, or the passage of
time (Hogrefe, 2013).

Several specification languages based on the model of EFSM have been
developed. For example, Estelle is based on the EFSM model that shows a system
consisting of several interconnected components; each is represented as a module
communicates via input/output interactions with other modules in the system

(Budkowski, & Dembinski, 1987).
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3.2.4 Hierarchal Finite State Machine (HFSM)

Harel (1987) provided extensions to the conventional state machines and state
transition diagrams: hierarchy, and concurrency, which can be considered a shorthand
notation. These extensions called hierarchal finite state machine (HFSM) or Statecharts
(Harel, 1987) can be used to describe complex system behaviors in a compositional and
modular manner.

Due to the fact that some systems have a very large set of states and transitions,
using a flat and sequential FSM should be avoided because it becomes hard to represent
and analyze those systems (Girault, Lee & Lee, 1999). Therefore, a hierarchy provided
by Harel (Harel, 1987) can be used to resolve this problem.

To clarify, HFSM is defined where a state can be further nested into another
finite state machine. The benefit of using HFSM is to reduce the number of states. As
illustrated in (Girault, Lee & Lee, 1999), FSM can be used to describe the behavior of a
module in a concurrency model that FSM can be nested within (Girault, Lee & Lee,
1999). Equally, a subsystem in a concurrency model can become active when it is

nested within a state of FSM (Girault, Lee & Lee, 1999).

3.2.5 Communicating Finite State Machine (CFSM)

In some cases, because of their complexity, it becomes quite sophisticated to
specify and model distributed systems and communication protocols in form of FSM
regardless of their conceptual simplicity (Klemm, 1996). Therefore, CFSM can be used
to model such systems since it has the same potential functionality of finite state
machine (FSM), but it is extended with the support of data handling and asynchronous
communication (“Finite State Machines,” 2001).

CFSM is actually a FSM extend with support for data handling and asynchronous
communication. CFSM has locally synchronous behavior and globally asynchronous
behavior. It is useful for embedded systems and communications protocols that are
used for a description of the control structure of specifications written in languages like
Statecharts and SDL (Hierons, 2001).

The model of CFSMs was introduced by Brand and Zafiropulo to investigate a

model of communication protocols with regard to certain protocol properties (Brand &
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Zafiropulo, 1983). They proposed a model for designing and analyzing communication
protocols that is based on finite state machines (FSMs).

CFSMs describe all component processes of a system in which each process is
modeled by one or several FSMs, and a full-duplex, error-free, FIFO channel to
represent the interconnecting channel along with their desirable properties that are

responding to only the events that occur (Brand & Zafiropulo, 1983).

@/

Queue 2->1

CFSM 1 CFSM 2

Figure 3.2: Communicating Finite State Machines (CFSMs) by Klemm, 1996

The processes communicate by sending and receiving messages with no
assumptions regarding the time that a message spends in a channel before it is
delivered to its destination. It shows protocol parties and the communication medium
as separate entities (Brand & Zafiropulo, 1983).

Brand and Zafiropulo (1983) assumed that the proper abstraction of the
channels is to have queues with unbounded capacity because the protocols may
operate on different channels with different capacities allowing for arbitrary number of
messages in transit. As explained by Brand and Zafiropulo (1983), using this proposed
model of communication protocols have an advantage over Petri nets in that it is more
powerful in modeling channels such as FIFO property, but it is less powerful in
modeling processes (Brand & Zafiropulo, 1983).

Bollig (2006) expressed CFSM as a model consists of a set of FSMs that are
connected pairwise with reliable, unbounded, FIFO channels. They share one global
initial state and several global final states. Each FSM has a set of transitions that are
labeled with send or receive actions (Bollig, 2006). A send action puts a message at the
end of the channel where a receive action is taken provided that the required message

is found in the channel (Bollig, 2006). This model can be extended to allow for CFSMs to
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send specific synchronization messages which results in more expressive power of that
model (Bollig, 2006).

A simple example was shown by Bochmann (1978) to describe the alternating
bit protocol defined by Bartlett, Scantlebury, and Wilkinson in (“A note on reliable full-
duplex transmission over half-duplex links”, 1969). It demonstrates the use of the
proposed notation they provided in (Bochmann, 1978) for describing of finite state

machines of this communication protocol.

3.2.5.1 Communication Mechanisms For CFSM

Besides queuing of messages (which this thesis concentrates on), there are other
mechanisms for communication between CFSMs. One of these mechanisms is shared
variables communication. This mechanism is applied to Moore machine where a
particular machine accesses the local variables of the other machine (i.e. the variables
that implicitly represent the current state) in which its transition has an enabling
predicate or enabling condition that requires the later machine to be in a specific state.

The other mechanism is synchronous communication (also called direct
coupling, rendezvous interaction, or message passing without queuing) that expresses
the interaction between FSMs. It is a form of communication where two FSMs
participate at a point of communication simultaneously and the two transitions are
represented as one transition of the overall system (Bochmann, 2013).

A method call is another type of communication that is implemented in original
Umple state machine. The state machine responds to the occurrence of events
implemented as public functions, which return a Boolean value. These functions are
called by any component of the system. The functions return true if the event results in

executing the transition, otherwise they return false (Badreddin, 2012).

3.3 Specification and Description Language (SDL)

Specification and Description Language (SDL) is a formal language that has been
used for system analysis and design and communication protocol specifications since
the early 1980ies. It is used for event driven, real-time and communicating systems

(Babich & Deotto, 2002). The main applications of SDL are communication protocols
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and telecommunication systems (Babich & Deotto, 2002).

SDL was developed by Telecommunication standards sector (ITU-T) of the
International Telecommunication Union (ITU) between 1976 and 1992 and it has been
evolved since then (Babich & Deotto, 2002).

The latest version of the ITU-T Specification and Description Language is SDL-
2010. This takes the place of the previous version SDL_2000, It is based on object-
oriented principles and is combined with UML in such a way that the UML models are
integrated with the SDL-2010 models (SDL Forum Society, 2013).

SDL-2010 provides textual and graphical representations of the structure,
behavior, and data of communication systems and protocols in addition to physical
descriptions (SDL Forum Society, 2013). It describes distributed systems using finite
state machines in which the systems are communicating through channels by sending
and receiving signals. The behavior of each system in SDL is described as a set of
processes; each process is represented as an extended finite state machine (SDL Forum
Society, 2013). The processes of the system operate concurrently and interact with
each other via signals. To illustrate, each process can be in a state waiting for an input
signal or it is in a state transition. During a state transition, outputs can be generated, or
signals can be sent. Each process has its own input queue in which an input signal to a
process in a state transition is stored in a FIFO sequence, and it is processed
asynchronously (SDL Forum Society, 2013).

The example in (Hogrefe, 2013) describes the input queue mechanism of a
process in SDL. It explains the order of removing the signals from input queue in order
to initiate the transitions to move a machine from one state to another (Hogrefe, 2013).
[t shows that when a signal is at head of a queue and the state cannot respond to it, it
will be discarded unless the SAVE operator is attached to the state, then this signal will
be saved for later consumption (Hogrefe, 2013). The signals will be continually

removed from the input queue and processed until there is no kept in the queue.

3.4 Unified Modeling Language (UML)

The Unified Modeling Language is a standardized notation for object-oriented

software systems that is based on a set of diagrams in which each diagram describes
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aspects of the structure and the behavior of a software system.

The UML standardization is managed and coordinated by the Object
Management Group (OMG) (Babich & Deotto, 2002).

UML statechart diagram concentrates on the concept of event-ordered behavior
of an object (OMG, 2013). The different elements of the state machine are the following:
Regions: If a state machine at topmost level or a state has two or more regions, then
these regions are orthogonal to each other. A part of behavior can be represented by a
region that may execute concurrently with its orthogonal region. Each region comprises
of a set of states and transitions determining the behavioral flow within such region. It
also has its own initial and final states (OMG, 2013).
States: A state machine consists of a set of states for which each state represents a
situation of the execution of the state machine’s behavior held by some invariant
conditions implied through the name of the state. There are three types of states
defined by UML; simple, composite, and submachine states (OMG, 2013).
In Umple, a string attribute is controlled by a state machine, which has an unbounded
number of states. In Umple, the first state is made by default as the start state and the
end state is a state that does not have any outgoing transitions (Badreddin, 2012).

* State entry: The state may have associated entry behavior that is executed upon
entering to the state (OMG, 2013).

* State exit: The state may have associated exit behavior that is executed upon
exiting from the state (OMG, 2013).

» State doAcitivity: The state may have associated doAcitivty behavior that starts
execution upon entering the state but after executing the state entry if it is
defined and executes concurrently with any other behavior defining n the state
until it completes or the state exit executes (OMG, 2013). In Umple, doActivity
represents a long-running computation while in a state that are executed by a
separate thread. This in turns allows the state machine to stay live and respond
to other events; even while the do activity is running. The do activity is
terminated by a transition out of the state (Badreddin, 2012).

* State history: The state history is associated with region of composite states for
keeping track of the state configuration it was in when it was last exited in order
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to enable easily returning to the same configuration when the region becomes
active again (OMG, 2013).

* Final state: It is a special type of a state that a region has to indicate that such
region has completed (OMG, 2013).

Transitions: A single directed arc represents a transition that originates from a source
state and terminates on a target state that indicates a fragment of the state machine
behavior (OMG, 2013). Umple supports the syntax for different types of state machine
transitions: timed transitions, instantaneous transitions, and reflexive transitions
(Badreddin, 2012).

Transition can be associated with:

* Events: The semantics of state machine events in Umple is to implement the
event-handling functions. If an event-handling function executes, it would first
check the current state of the state machine, call any entry, execute the
transition actions, and call exit actions, if such actions are specified.

* Guards: The guard constraint is evaluated before the transition is enabled. If the
guard constraint is evaluated to false, then the transition will be disabled. If it is
evaluated to true, then the transition is enabled (OMG, 2013).

* Actions or Effects: During the transition, the number of actions can be

executed. Actions are executed when the transition is fired (OMG, 2013).

3.5 Umple State Machine

An implementation of state machines in Umple builds on UML 2.4.1
specifications, but it does not thoroughly follow them, since Umple has adopted the
philosophy that it has the freedom to try out new ideas (Badreddin, 2012). It supports
most of the UML 2.4.1 semantics, including events, signals, guards, transitions, actions,
entry actions, exit actions, nested states, concurrent states, and some other features
(Badreddin, 2012).

The simple state diagram in Figure 3.2 is drawn using UmpleOnline, and it
illustrates the main elements of the state machine: two states, s1 and s2; two

transitions: two events, el and e2; one guard; and one transition action.
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Figure 3.3: A simple state machine as shown in UmpleOnline

3.5.1 TCP/IP Simulation Example

To illustrate the use of Umple state machine for developing of the
communication protocol, a TCP/IP simulation example can be used which consists of a
set of states and transitions to describe the behavior of this protocol. This up-to-date

example can be found in UmpleOnline. This example was built based on information

provided in (Uijen, 2009).

passiveOpen activeOpen / sendSyn();

syn / sendSynAck(); | SYN_Sent

SYN_Received synAck / sendAck();

ack

Established | ~data / sendData(); limeOut

activeClose / sendFin(); \fin / sendAck();

ack \fin / sendAck(); passiveClose / sendFin();

@IN_Wait_a [Closing j Last_ ACK

fin / sendAck(); \ack

nAck / sendAck();

Timed_Wait

Figure 3.4: State machine of TCP/IP simulation
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The Umple code for this example is provided below showing Umple syntax for

state machine of TCP/IP simulation.




Listing 3.1: Umple syntax for TCP/IP simulation state machine

The TCP/IP simulation system consists of (11) states. The system starts in the
initial state Closed. Each state of the TCP/IP state machine has at least one transition.
The whole state machine has (17) transitions; that is, for each state, an event triggers a

transition to the next states. A complete sketch of TCP/IP is given in Appendix A.1.
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3.5.2 Communicating Mechanisms For State Machines in Umple

First, the current mechanism is method call. Problems:

1. Itassumes there is only one active process in the system that calls a given state
machine (no concurrent input events).

2. If one called transition produces as output a call on the state machine that made
the original call (input), then that latter machine has two concurrent methods
activated (very bad practice).

Making the methods synchronized does not work because in case 1 there may be
deadlocks, and in case 2 there will be a deadlock.

To avoid such problems, we introduce the queuing mechanism of CFSM into
Umple. In addition, the pooled approach of CFSM is provided for handling the
unspecified receptions, which in turns reduces these problems. We also provide other
mechanisms for handling the unspecified receptions in Umple.

In my thesis, [ have realized the implementation of queued and pooled cases in

Umple state machines in next chapters.

3.6 Related Work

In this section, a literature review is provided to study the handling of queues in
three different finite state machine generators: State Machine Compiler (SMC), Sparx
Systems Enterprise Architect (EA), and the SDL generator tool Real Time Developer
Studio (RTDS).

3.6.1 State Machine Compiler (SMC)

State Machine Compiler (SMC) is a free, open source Java-based tool. SMC has
been designed to work on any platform that supports Java 1.7 or better (Rapp, 2014).
SMC enables a developer to write a state machine specification textually using the state
machine language, and then SMC generates the State Pattern classes for the developer.
[t then uses the State patterns classes to generate the executable code in one of 14

languages (e.g. Java, C, C++, PHP) to implement the state machine (Rapp, 2014).
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SMC allows for viewing and editing the whole finite state machine in a single file
making it easy to get the design advantage of the State Pattern without writing the state
classes (Rapp, 2014).

The goal of SMC is to support active objects of an application by providing an
FSM. A finite state machine approach in SMC starts with an active object that receives
asynchronous events and might send these events as well (Rapp, 2014).

Rapp (2014) emphasized that the philosophy about the state machines in SMC is
different from the UML philosophy; thus, SMC does not follow the Harel/UML
statechart specification. Therefore, there are some UML statechart features that are not
supported by SMC. For example, hierarchical state machine, composite states, deferred

events, compound transitions, and completion events are not supported by SMC.

Transition Queues:

The main problem that might occur in a state machine when using SMC is to
issue a transition from within a transition action (Rapp, 2014). To solve this issue, SMC
proposes using timers and transition queues. It is suggested not to use transition
arguments if using transition queues to avoid any difficulties or errors that might occur
in the state machine code.

The generated Java code from a class that has an associated FSM will then have a
transition table private member and transition queue private member to place

transitions in for later execution (Rapp, 2014) as follows:

private static HashMap _transition map;
private LinkedList transition queue;

Also, it will have a class static block to fill the transition table with transition

methods as follows:

static {
try {
Class context = AppClassContext.class;
Method[] transitions = context.getDeclaredMethods();
String name;

int 1i;
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for (i = 0; i < transitions.length; ++i) {

name transitions[i].getName();
// Ignore the getState and getOwner methods.

if (name.compareTo('"getState") != 0 && name.compareTo('"getOwner") !=

transition map.put(name, transitions[i]);

}

} catch (Exception ex) {}

Finally, a transition method is added to queue up a transition only if it detects
the call outside a transition, and then dequeue a transition and execute it (Rapp, 2014)

as follows:

private synchronized void transition(String trans name) {
// Add the transition to the queue.
transition queue.add(trans_name);

// Only if a transition is not in progress should a transition be

issued.
if (_fsm.isInTransition() == false) {
String name;
Method transition;

Object[] args = new Object[0];

while (_transition queue.isEmpty() == false) {
name = (String) _transition queue.remove(0);
transition = (Method) _transition map.get(name);
try {

transition.invoke(_ fsm, args);
} catch (Exception ex)
{

// Handle exception.
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return;

In Umple, we define a queued state machine (QSM) which is a state machine
that has a queue in which events are injected to be processed for later execution. The

Java generated code from QSM is described in Chapter 4.

Default transitions:

In addition, SMC deals with a case of unexpected events by defining “Default”
transitions that are placed in a state to back up all transitions (Rapp, 2014). These
transitions enable objects to handle and recover unexpected events and continue
execution normally. The “Default” transition may have guards, and it may not have
transition arguments (Rapp, 2014).

Moreover, if a state receives a transition that is not defined in that state, a
special state named ‘Default” can be defined. This special state contains transitions that
may have guards and argument features. If a user does not define a Default state or a
Default transition, and there is no relevant transitions defined in a state machine when
a cetain event occurs, SMC will throw a “Transition Undefined” exception (Rapp, 2014).
In Umple, we have a special transition named ‘unspecified’ to handle unexpected

events. More information about this special transition is presented in Chapter 5.

Transition Arguments:

Furthermore, SMC enables defining argument lists for state machine transitions.
The transitions can receive an argument list that is typically used in the guard
conditions or possibly in transition actions (Rapp, 2014). When the same transition is
defined with multiple guards and different argument lists are used, SMC will result in
incorrectly generated code (Rapp, 2014). In Umple, a transition’s arguments are also

supported.
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3.6.2 Sparx Systems Enterprise Architect (EA)

Enterprise Architect has been developed by Sparx Systems to specify, design,
construct and document software systems projects (Sparx, 2014). It is a visual platform
built on UML 2.5 specifications to be used for various generalized modeling purposes. It
includes a set of features and capabilities that cover all aspects of development (Sparx,
2014). Sparx Systems has developed EA for 15 years (Sparx, 2014). Itis intended for a
broad range of industries in 160 countries.

EA supports generating and reverse engineering of source code for state
machines and other models in programming languages such as Java, C, and C++ (Sparx,
2014). The UML modeling in EA supports and depends on code engineering; that is, a
user can generate code from a model, and create and update the model from code. It
also allows for debugging, compiling and visualizing executable code generated from
the model (i.e. it converts the actual code execution and calls into visual diagrams). In
addition, the EA tool allows for round-trip and synchronization of code in various
programming language; therefore, code generation templates provided by EA enable
customizing generated source code(Sparx, 2014).

Enterprise Architect supports modeling UML state machines that are based on
Harel State Charts (Sparx, 2014). In EA, a state machine demonstrates the movement of
an element (a Class) between states. It also classifies the behavior of this element
depending on transition triggers and conditioning guards. The state machine diagrams
include a set of elements that a user can use for modeling the behavior of dynamic
systems. State machine diagrams elements include states, initial states, final states,
history states, decision points, junctions, entry points, exit points, terminations, and
forks/joins (Sparx, 2014). Also, connectors used for state machine diagrams are
transitions and object flows. The transition defines the logical movement from a state
to the next state in a state machine (Sparx, 2014). It can have a guard, effect, or trigger
(event). The trigger can be of the following four types: Call, Change, Signal, or Time.

In addition to those state machine diagram elements, it is possible to add
composite states and regions to a state machine diagrams by first creating a composite

state element and then subdividing the element with regions.

52



Enterprise Architect not only supports generating, compiling and executing Java
code from State Machines, but also it supports simulating State Machines in visual
models during execution (Sparx, 2014).

EA does not generate Java code for queued transitions explicitly but while the
execution of a simulation of a state machine, the triggers are queued to the end of the
list of the simulation events. The status of a trigger can be a used trigger (i.e. fired), a
lost trigger (i.e. fired but has no effects), a signaled trigger (i.e. fired and consumed by
one or more transitions), or not signaled trigger (i.e. have not fired yet). The EA tool
also enables a user to add parameter values to a signal trigger each time the simulation

fires the trigger (Sparx, 2014).

3.6.3 Real-Time Developer Studio (RTDS)

PragmaDev Real Time Developer Studio (RTDS) = supports both SDL and SDL-
RT. It is used to model and develop real-time and embedded software (Pragmadev: Real
time developer studio, 2014).

RTDS can be used for all stages of the development cycle. It provides users with
a graphical interface that enables them to manage projects, design models, simulate the
models, and generate code from the models (Pragmadev: Real time developer studio,
2014).

RTDS supports the SDL standard of the International Telecommunication Union-
Telecommunication Standardization Sector (ITU-T), and also supports the SDL-RT
standard, which is a mix of the SDL standard, UML, and the C language (Pragmadev:
Real time developer studio, 2014).

SDL contains an action language with an execution semantics in addition to its
graphical notations. For this reason, SDL is considered as a formal language and its
models are executable. However, SDL-RT is semi-formal because it combines the SDL
standard with C code (Pragmadev: Real time developer studio, 2014).

RTDS tool allows development of the requirements, structural and behavioral
models and designs; it also supports model checking capabilities, traceability
information, code generation, and testing (Pragmadev: Real time developer studio,

2014).
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RTDS supports generating code for the whole system or sub-parts of the system
such as a process, a task, or a block in order to compile and execute it. The generated
code can be documented for further customization (Pragmadev: Real time developer
studio, 2014).

RTDS only enables generating C or C++ code from SDL models; it does not
support generating Java code from these models. Thus, the comparison of the generated
code of the SDL models with the generated code of Umple queued state machines is not
applicable at this level. This is because our work only enables generating Java code for
queued state machines in Umple. However, the other team members in our group are
working on generating C++ from the queued state machines (Pragmadev: Real time

developer studio, 2014).

3.7 Handling Unspecified Reception in Specification Languages

To handle Unspecified Reception errors, the following ways can be used:

* Inputis dropped and ignored which is the semantics of SDL and original Umple
state machines. In certain designs, this can be a valid choice. For example if a
state machine is modeling user interaction, and certain buttons are to be ignored
in certain states, then it is reasonable to just drop events that correspond to
ignored button presses.

* Complete behavior for all inputs by adding “error” state and transition
corresponding to the inputs that were non specified in the original specification
will lead to this error state. In an error state, all inputs will lead back to this
error state. This is what we have done in Umple with the addition of the
‘unspecified’ keyword.

* Queue models defined for communicating subsystems or components.
Bochmann (2013) listed three queuing models in which the definition of the
properties of the composed system depends on: a single input queue for each
component, multiple queues, one for each source component, and an input pool.
The message transmission can be reliable or unreliable and the messages can be
received in order as they are sent or not. For the third model that is input is

deferred and placed in a buffer pool, - inputs are left in the buffer pool and will
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not be consumed in this state of the specified component. When the state
changed appropriately, they can be consumed. The SAVE operator in SDL,
Deferred Event in UML, and General Message Pool are used for this purpose. In
Umple we have added the concept of a pooled state machine. Details of these are

described in the next subsection.

3.7.1 Original Semantic of Umple State Machines in Case of Unspecified Reception

In original semantics of Umple state machines, the default behavior for handling
unspecified reception error is to return false and ignore an unexpected event if the
current state does not respond to it.

In addition, in the case of extended semantics of Umple state machines,
unspecified reception occurs when a message exists at the head of queue and there is a
set of reception transitions but the message in the queue is different from the messages

expected by the reception transition.

3.7.2 Save Operator in SDL and Deferred Event in UML

In current SDL semantics, each state machine is assumed to have a single input
queue where received messages from different sources are stored. If an unspecified
reception event occurs, a message at the head of a queue will be dropped.

SDL supports the SAVE operator which is concerned with non-ordered signal
reception. A SAVE operator in SDL matches the deferred event of UML (Selic &
Rumbaugh, 1999). The main idea of SAVE operator is to postpone the consumption of a
specified signal for future processing until the following transition is executed (Babich
& Deotto, 2002). In the SDL grammar, the SAVE operator specifies a set of identifiers for
signals and remote procedures whose instances are not related to the process in a state
to which save is attached and they have to be saved for future processing (Babich &
Deotto, 2002).

The SAVE operator changes the order of signal consumption because it saves the
events that cannot be triggered in a state where this operator is defined (Hogrefe,
2013). In addition, the SDL SAVE construct is added for each signal that may arrive in
the input queue earlier that expected to prevent deadlocks in the SDL specifications

(Hogrefe, 2013).
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Unspecified reception in UML is an unexpected event reception which is
recognized as a semantic variation point. The default behavior in UML when
unspecified reception occurs is to discard this event if the deferred construct is not
defined (Lilius & Paltor, 1999). However, in UML state machines, there is a special
mechanism for deferring events in states (Selic & Rumbaugh, 1999). This can be
achieved by including a clause ‘deferred / {event list}’ in a state (Selic & Rumbaugh,
1999). This advanced constructor is used to solve the problem: when an event usually
does not enable any transitions, it is kept waiting until the next state, meaning that the
transition selection mechanism does not discard this event in this case. In the UML
standard, a set of deferrable events can be attached to a state. So if the event that does
not enable any transitions occurs, it is pushed into the deferrable list and once the
system move to a next state, this event will be dispatched and processed if it enables
any transitions (Lilius & Paltor, 1999). Upon entry to such state, the UML state machine
will automatically recall any saved event(s) that are no longer deferred and process

them as if they have just arrived (Selic & Rumbaugh, 1999).
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Chapter 4: Queued State Machines (QSM) and Pooled State
Machine (PSM) in Umple

4.1 Enhancements to Umple State Machines

We extend the semantics of Umple state machines to add queued state machines

(QSM) and pooled state machines (PSM).

These mechanisms can be used for communicating FSMs (CFSMs), but can also

be useful when there is only one state machine, with other code triggering events.

A queued state machine (QSM) in Umple is a state machine that works in a
multithreaded environment and supports an event queue. The code that creates events
will add each event to a queue. A separate thread processes the events in the queue in

first-in-first-out (FIFO) order and performs any actions and necessary state changes.

A pooled state machine (PSM) in Umple works in the same way as the queued
state machine (QSM) except in the way it deals with the case of unspecified reception.
As with QSMs calls to event methods of PSMs return immediately. But the handling of
events is not done strictly in FIFO order as in QSMs, but in the order in which the events
are required by the transitions from the current state. In other words, if an event is at
the front of the queue, but the current state does not have a corresponding transition,

then the next event in the queue is considered (and so on).

QSM and PSM in Umple can be used in the case when we have only one state
machine that can operate normally while the other thread triggers events. In other
words, one thread will take care of implementing the behavior of the state machine
while the other thread handles event triggering. In addition, QSM and PSM can be used
for communicating finite state machines (CFSMs). They perform thread safe operations.
They can provide better handling of signals and asynchronous communication
semantics to simplify communication between state machines interacting with each

other by asynchronous calls of events and passing of messages.

The main features of the queued and pooled state machines are:
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1. Adding the events to the queue/pool as they are called.

2. In QSM, processing the events in the same order as they are received (i.e. in FIFO
order).

3. The event-processor thread processes the events until there are none left in the
queue/pool (or none in the pool that can be handled), and then it waits for the
next event to arrive.

4. If an event occurs in a QSM that does not match any event in the current state
(unspecified reception), and there is no transition labeled ‘unspecified’, then the
event is taken off the queue and ignored (i.e. it is not processed). If an
‘unspecified’ pseudo-event exists in the current state then this transition is taken

instead.

Queued and pooled state machines extend the original semantics of state
machines in Umple, in the following called Basic state machines, which is considered to
be appropriate mostly for simple applications. Basic state machines in Umple work in a
single thread, they process events immediately as they are received. When an event
occurs and there is no state anywhere in the (queued, pooled or basic) state machine
that accepts it, the compiler will detect this event and indicate to the user that this

symbol cannot be found.

When the state machine's event occurs, the state machine code continues in the
same thread as the caller. A problem occurs when there are two machines and the
second machine creates an event for the first machine in a transition that is triggered
by the first machine. As shown in Figure 4.1, there are two method calls active on the
same machine at the same time (which is bad programming practice). In fact, during
the transition of SM1 triggered by b, the transition of SM2 is called, which in turn calls
the transition c of SM1 (which has not yet completed its b transition) - two transitions

are active on SM1 at the same time.

58



SM1 SM2

o | .1

—_— >
S11 biSM2. S12 S21
‘ yl,y2 cly2 clyl |l c alSM1.c
\ 4 \ 4

Y
S14 l S13 I S22

Figure 4.1: Example of the state machines in which two event method calls
active on the same machine at the same time

To illustrate the differences between the basic and extended semantics of Umple
state machines, an example of two state machines is shown in Figure 4.1. Two
questions needed to be addressed to distinguish between the actual and expected

behaviors of those two machines, which are:

“What happens when an input event ‘b’ is processed? What output to the
environment would have been produced and which state would the machine (SM1) be

after an input event ‘b’ has been completely processed?”

The expected behaviors of both machines are as follows. The first machines SM1
is initially in state (s11) and the second machine SM2 is initially in state (s12). When an
input event ‘b’ occurs, the action of this transition is executed: an event ‘a’ of the state
machine SM2 is called and the event ‘b’ is processed; the machine SM1 moves from
state (s11) to state (s12). Then the event ‘a’ of the machine SM2 is processed. The
action of this transition includes calling the event ‘c’ of the machine SM1. It then moves
the machine SM2 from state (s21) to state (s22). Then, the event ‘c’ is the processed.
The machine SM1 transitions to state (s13) and produces the output ‘y1’ to the

environment.

In Umple basic state machine, Umple uses procedure call semantics to process
input events. That means each transition of the state machine is realized as a method

that is called when the event occurs.

Implementing the above example in Umple basic state machine causes the
transitions b and c to be active at the same time. This is due to the fact that Umple

implements the basic state machines in a single thread environment.
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The actual behaviors of the Umple basic state machines: SM1 and SM2 are not as
expected. During the call of the ‘b’ transition, the method ‘a’ is called on the same object;
that is, there are two processes executing in the same object simultaneously, the
waiting of the ‘b’ method, and the execution of the ‘a’ method. Thus, the actual
behaviors of SM1 and SM2 are as follows. When the event ‘b’ occurs, the method ‘a’ is
called, the event method ‘c’ is called and SM2 moves to (s22). When the method ‘c’ is
called, the machine SM1 is still in state (s11) because the method ‘b’ is still executing.
Thus, the method ‘c’ is called; the machine SM1 moves from (s11) to (s14), and the ‘y2’
output is produced to the environment. The final outputs indicate that there is a

problem in the implementation of these state machines SM1 and SM2 in Figure 4.2.

SM1 SM2

o | ] ; !
s11 PRSM2ayf o, I s21
y2 cly2 iy ¢ alSM1.c

—
Y

S14 S13 S22

\ 4

v

Figure 4.2: The final outputs of the Umple basic state machines’ behaviors

The proposed solution for this problem is to use Umple Queued State Machines
(QSM) because they are implemented in a multithreaded environment, which will work

for this kind of concurrency.

The actual behaviors of SM1 and SM2 when using QSMs are shown in Figure 4.3,
4.4,4.5, and 4.6. When the input event ‘b’ occurs, the event ‘a’ is injected in the queue
until the event ‘b’ is completely processed. The process transitions SM1 from (s11) to
(s12). Then, the event ‘@’ is taken off the queue (it is consumed). The process of the
event ‘a’ performs calling of an event ‘c’. The event ‘'c’ is injected in the queue. After the
event ‘a’ is completely processed to move SM2 from (s21) to (s22), the event ‘c’ is taken
off the queue (it is consumed). It moves SM1 from (s12) to (s13) and produces ‘y1’ to
the environment. Figure 4.6 shows the final outputs of the implementation of queued

SM1 and queued SM2.
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Figure 4.3: The first step of the QSMs implementation
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Figure 4.4: The second step of the QSMs implementation
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(5) Processing event ‘a’:
Creating event ‘c’
Leading SM2 from s21 to s22

Figure 4.5: The third step of the QSMs implementation
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Figure 4.6: The final step of the QSMs implementation
The other problem that may occur when using Umple basic state machines is the
unspecified reception design error.
Ignoring Unspecified Events in Basic and Queued State Machines in Umple
Currently, the UML default behavior is to ignore that event. This is also the
semantics of Umple basic and queued state machines, which is to ignore unspecified
receptions. The default behavior is that the event method returns false and the state

remains unchanged.

SM

Figure 4.7: Example of unspecified reception problem in
a state machine

The state machine shown in Figure 4.7 using Umple basic or queued state
machine results in an unspecified reception error if the sequence of events executed is:
<a, b, b, c>. If an event ‘@’ occurs, the machine SM moves from state (s1) to state (s2).
When an event ‘b’ occurs, the transition is fired and the process performs the transition
to state (s3). Now, the event ‘b’ occurs and because the machine is now in state (s3) not
(s2), this event would be ignored, which means it would not be processed. The default

behavior of the Umple basic and queued state machine is to ignore and discard
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unspecified events. Finally, the event ‘c’ triggers the transition resulting in leading the

machine SM to state (s1).

The execution trace of <a, b, b, c> is illustrated in Table 4.1.

Table 4.1: Execution trace for Umple code in Figure 4.1

Event Current State | Next State Note
a sl s2 a is consumed and processed
b s2 s3 b is consumed and processed
b - - b is ignored - Unspecified reception error
C s3 sl c is consumed and processed

Other Solutions For Detecting and Handling Unspecified Receptions in Umple

We have introduced three fundamental design alternatives to detect and handle

unspecified receptions that may occur at any time, which are to the following:

Use a special transition named ‘unspecified’ in a state, at any level of nesting,
which would match any event that is not handled when it is encountered in a
state. This solution is an extended semantics of a state machine. In SDL, a star
() is used to indicate any other message that may be received in that state of
the machine (SDL-RT, 2013). The ‘unspecified’ transition has the same semantic
where a message that arrives, and there is no transition to consuming it in the
current state; it would be received and consumed by the ‘unspecified’ transition.
The semantics of this special event have the same semantics as any other event
of a state machine which means that it could perform any kind of action just like
any regular event; it could be a self-transition; it could transition to some other
state, or even it could be guarded. It can then do one of the following actions:
- The ‘unspecified’ transition goes back to the same state, which means
that the message is ignored.
- The ‘unspecified’ transition has an action to display a message indicating
that there was an unspecified reception.
- The ‘unspecified’ transition can lead to an error state, which can have an
instantaneous transition that leads back to the current state.
Use the after/before code injection capability of Umple to inject code after or

before events for all types of state machines (i.e. basic, queued, and pooled). For
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example, a method to display a message indicating that there is unspecified
reception can be injected after one or more event method handling. Thus, if an
unspecified reception is detected, the message is displayed to indicate that there
is an error.
* Use apooled state machine (PSM) that would only take messages from the pool
for which there is a transition in the current state to consume these messages.
The semantics of PSM works for the entire state machine. The semantics of PSM
is similar to the SAVE in SDL; however, the latter acts on a state-by-state basis
and only for the explicitly SAVED inputs. The semantics of the SAVE is that for a
given state a certain number of inputs (that would not be consumed) would be
saved for later (remaining in the queue). When the machine moves to a new
state, the saved messages will be treated first before any other messages in the
queue (SDL-RT, 2013).
The Behaviors of the Umple Basic and Queued State Machines if the ‘unspecified’
Transition is Specified
To illustrate how to use the unspecified reception handler mechanism, how the
semantics of each kind of the state machine is affected by this mechanism, what the
actions are taken when the unspecified reception handler mechanism is used, and what
outputs result from executing this mechanism with these types of the state machine, we
consider the following example shown in Figure 4.8. ‘unspecified’ transitions are added
to the states (s1) and (s3) of the state machine SM and change the default behavior of

this state machine.

SM

()

unspecified

unspecified

Figure 4.8: Using ‘unspecified’ transitions in states (s1) and (s3)
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Table 4.2 shows the executions for all three types of state machines when the

sequence of events called is <a, b, c, ¢, a, b>.

Table 4.2: Execution trace of the example in Figure 4.8

Basic State Machine

Queued State Machine

Pooled State Machine

initial | 51 s1 s1
a - ais called and processed. | - ais called and processed. | - ais called and
- transition to ‘s2.' - transition to ‘s2.' processed.
- transition to ‘s2.’
b - b is called and processed. | - bis called and processed. | - bis called and
- transition to ‘s3.' - transition to ‘s3.' processed.

- transition to ‘s3.’

- cis called and processed.

- transition to ‘s1.'

- cis called and processed.

- transition to ‘s1.'

- cis called and
processed.
- transition to ‘s1.'

- cisignored because it is
unspecified reception.

- ‘unspecified’' method is
called.

- transition to ‘s1.’

- cisignored because it is
unspecified reception.

- ‘unspecified’' method is
called.

- transition to ‘s1.’

- cis pooled because it is
unspecified reception.
- state machine is in ‘s1.'

- ais called and processed.

- ais called and processed.

- ais called and

- transition to ‘s2.' - transition to ‘s2.' processed.
- transition to ‘s2.’
b - b is called and processed. | - bis called and processed. | - bis called and
- transition to ‘s3.' - transition to ‘s3.' processed.

- transition to ‘s3.'

- ¢ is taken off the pool
and is processed.

- transition to ‘s1.'

The semantic of a pooled state machine (PSM) has a different strategy to handle

the events of the state machine. When an event occurs and there is no transition to

consume it, it would be saved in the pool. The state machine then continues its

execution. Another event in the pool that matches a defined transition in the current

state of the machine will be removed from the pool to be processed. When the machine

reaches a state in which the saved event has a transition to consume it, the event is

removed from the pool and is processed.
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Figure 4.9 shows the behavior of the state machine SM when the sequence of
events <a, b, ¢, ¢, a, b> occur. It shows that when the event ‘c’ occurs after the event ‘b’
triggering the transition to state (S3), the event ‘c’ is consumed and processed leading
the state machine SM to state (s1). Then when the event ‘c’ occurs, it will be saved in

the pool because there is no transition to consume it.
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Figure 4.9: The behavior of the pooled state machine (PSM)

4.2 Queued State Machines (QSM) in Umple

A queued state machine (QSM) has a FIFO queue, in which the series of events to
be executed are placed. The calling thread can then continue and do other tasks. A
separate thread exists in each state machine, which removes the events from the queue
one at a time and executes the corresponding transition method in the order they were

inserted into the queue.

During the design of the queued state machines, we uncovered a number of

issues related to the design decisions that we made, in order to end up with our final
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design of this type of state machines.

Let us consider the following example of a state machine that has two states s1
and s2 and two transitions. In this state machine, an event el causes the machine to
transition from state s1 to s2 and an event e2 causes the machine to transition back to

state s1, as shown in the state machine diagram of Figure 4.10.

Figure 4.10: A state machine as depicted in UmpleOnline

In order to derive the implementation from this model, we used the
UmpleOnline tool where we wrote Umple code to sketch this diagram (we can also
draw the diagram without writing the text and the text will appear directly), and then
we generated the Java code from this model. We modified this code to get the proposed

implementation of the model.

The pseudocode of what the Java code should look like is shown in Listing 4.1

below
1 public class X implements Runnable
2 {
3 create an enumeration for the types of messages accepted by the
4 state machine: Message type is defined as a string: *event M*
5 declare a message queue
6 declare a event-processor thread
7 constructor
8 {
9 create instance of the message queue
10 start the event-processor thread to remove from queue
11 }
12
13 // Event method handlers
14 _el()
15 {
16 check a current state then transitions to the next state
17 }
18 _e2()
19 {
20 check a current state then transitions to the next state
21 }
22 Define an inner class called Message to create object instances of
23 messages by passing their types and parameters as the arguments
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25 class Message

26 {

27 constructor with two arguments: message type and parameters
28 }

29 Define an inner class called MessageQueue that has two

30 synchronized methods for add and remove the events into the message
31 queue

32 *put method* to insert a message into the message queue and then
33 notify other threads.

34 *getNext method* to remove a message from the head of the message
35 queue. If the message queue is empty, then wait until an event is
36 added to the queue. Otherwise, remove the message from the queue
37 and return it.

38

39 class MessageQueue {

40 declare and instantiate a message queue

41 //put method to add the message into the queue

42 synchronized put (Message m) {

43 add a message to the pool and then notify

44 }

45 // getNext method to remove the message from the head of the
46 message queue

47 synchronized getNext () {

48 while the queue is empty, then wait, otherwise, the messge is
49 removed from the head of the message queue

50 }

51 }

52

53 //messages accepted

54 el () {

55 add a message to the message queue

56 }

57 e2 () {

58 add a message to the message queue

59 }

60

61 event-processor thread run method

62 {

63 do forever using while (true) loop {

64 check if the message queue is not empty, if yes, remove a
65 message from the head of message queue. Otherwise, waiting for an
66 event to be added into message queue

67 switch (message type) {

68 compare message type with each *event name M*

69 If it matches:

70 call event method *namex*

71 break

72 }

73 }

74 }

75 }

Listing 4.1: Pseudocode for queued state machine (QSM)

The following subsections discuss issues related to the design of a queued state

machine implemented in Java code.
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4.2.1 Multithreading Environment
A multi-threaded program in Java has an initial entry point (the main() method).
Other threads have additional entry points (run() methods), which are run

concurrently with the main() (He, 2013).

The main goals of making a program multithreaded are to improve perceived
performance, responsiveness and throughput by making use of multiple CPUs, and also

to simplify program design by separating concerns (He, 2013).

There are two methods for creating threads in Java. The first is to extend the
Thread class in java.lang.Thread and then to override the run () method. The second
method is implementing the Runnable interface and providing the implementation to

the abstract method run() to specify the running behavior of the thread.

Creating Threads For the Java Code of Queued State Machine Class:

For the design of the Java code that implements a QSM, we use the second
method of creating a thread. In the constructor of the class, we construct a new Thread
instance with "this" as an argument to the constructor and then invoke the start ()
method that calls back run () in the Runnable object. The reason for implementing the
Runnable interface is because Java does not support multiple inheritances. So, if a class
already extends from some particular superclass, then it cannot extend Thread.
Implementing Runnable will give a program more flexibility to extend other base

classes.

Therefore, there are several threads that work simultaneously; each queued
state machine has its own thread (i.e. event-processor thread), and the other thread is
the thread of the process that sends a message along with its parameters if there are

any.
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Below is a piece of Java code generated from the QSM class illustrated in Figure

4.10.
1 import java.lang.Thread;
2 class X implements Runnable {
3 o o
4 public X()
5 {
6 setSm(Sm.sl) ;
7 queue = new MessageQueue () ;
8 removal=new Thread (this) ;
9 //start the thread of X
10 removal.start () ;
11 }
12 }

4.2.2 Enumerations for Incoming Message Types

State machines communicate with each other by passing messages that are
encoded when they are passed as an object instance of Message that has a type and
parameters. The types of incoming messages for each queued state machine are
represented as enumerated values in the generated Java code. The "MessageType"
attribute is declared in Java as a special data type enum that has a number of constant
values. A variable of the enum type can be defined and which can be assigned to one of

the enum constants as value.

The following code is an enumeration for the message types of the queued state
machine:

//enumeration type of messages accepted by X

enum MessageType { el M, e2 M, e3 M, e4 M }

4.2.3 Inner Classes: MessageQueue and Messages Classes

To implements a QSM, we decided to create two classes; one is the Message class
and the other is the MessageQueue class. Message and MessageQueue contents are
exactly the same for all queued state machine classes. We have three design

alternatives to represent these two classes in the Java code:

First: The first option is to externalize these two classes and have them used by all
classes. In other words, this design allows for creating Message and MessageQueue as

separate public classes that can be used by all classes that implement a QSM. They
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would have to be instantiated by using templates because they need to operate on a
specific enumerated type of messages. This design helps avoid creating a lot of nearly
identical code in all classes because creating identical code in every class breaks the

simplicity of the design.

Second: This option is to get rid of these classes completely and make their methods a

part of the main class instead.

Third: The final option (and the decision taken) is to keep the same architecture, which

is to have them as inner classes inside of the main class.

We create for each outer class that implements a QSM two inner classes; one is
the Message class and the other is the MessageQueue class. Inner classes are created
with the ‘protected’ access modifier. Protected inner classes restrict access from classes
other than the ones in the same package and its subclasses. Inner classes are used for
readability and to provide access to the private variables and methods of the outer
class. They act like any other member of the outer class. We create instances of these
inner classes from inside the outer class. The members of the inner classes can be
accessed by the outer class no matter what their access modifier is. The outer class
members can be accessed within inner classes directly, no matter what the access

modifier is.

This is the best solution among the three options because when message
parameters are involved, things become complicated with the other options. In
particular, if one considers the case of a message pool (not FIFO) then there will be

methods that depend on the state of the machine.

Below, we provide more details about these two classes, and our design

decisions for defining these classes.

Message class: We defined an inner class called Message that is used to create a

message that may or may not be associated with parameters.

This class has two attributes. The first attribute is ‘type’ that is used to define
the type of the message. This attribute is of data type “MessageType” that is defined in

the outer class as an enum type containing the set of all types of messages (events) as
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constants. The second attribute is “param” which is defined as “Vector” type. This
attribute is used to define the list of parameters of each message. Each parameter can
be declared as any data type whether Integer, Strings, etc. Also, the message may have

no parameters; the list then will contain only the null value.

Vector is used to define a list of parameters for the message (event). Vector is
synchronized in such a way that if one thread is working on the Vector, no other thread
can get hold of it (Singh, 2013). This means only one thread can perform an operation
on a Vector at a time. Also, Vector can grow by doubling its size by default. It maintains

the element insertion order and allows duplicated and null values (Singh, 2013).

Below, we illustrate a piece of Java code that demonstrates the definition and

declaration of the ‘Message’ class:

1 protected class Message {

2 MessageType type;

3 //Message parameters

4 Vector<Object> param;

5 public Message (MessageType t, Vector<Object> p) {
6 type = t;

7 param = p;

8 }

9 @Override

10 public String toString() {

11 return type + "," + param;
12 }

13 }

Message and its parameters in Java code are used to represent the event in the

state machine and its arguments to be passed. For example, if a transition is defined as:
el (String eventName) -> s2;

The event is ‘e1’ and its argument is ‘eventName’ of type string. Thus, the

message is of type ‘e1_M’ and its parameter is ‘eventName.'

To create an instance of the message we create a new instance of the Message
class; its constructor has two arguments: type and param. For instance, for the above
transition, we create a message as follows: First, we add a ‘param’, which in this case is
(eventName) to a vector list as follows:

Vector v = new Vector(l);

v.add(0, eventName);
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Then we create the instance of a message as follows - to be later added to the

queue:
new Message(MessageType.el M, V);

MessageQueue class: We defined another protected inner class called MessageQueue
that has two synchronized methods: “put” for adding the messages with their
parameters to the queue, and "getNext” to remove and consume the messages from the

queue.

The queue of type (LinkedList) is defined and declared as an attribute in the
‘MessageQueue’ class to buffer the list of the messages in FIFO order, assuming that the

messages are instances of the ‘Message’ class.

Synchronization is an important concept in concurrent programming. It allows
threads to have mutual exclusion, to wait for a certain condition to become true, or to
send signals to other threads. It is necessary for reliable communication between
threads (Vogel, 2013).

Java provides a mechanism for synchronization called locks. When multiple
threads execute a particular part of code at the same time, locks ensure it is executed by
only one thread at a time. The simple way to ensure a specific method or class in Java is
locked is to use the ‘synchronized’ keyword (Vogel, 2013). This can be applied to
methods or blocks.

By using synchronized, the single thread can execute a synchronized part of
code at a time and each thread that enters a synchronized block of code is able to see
the impact of all previous changes guarded by the same lock that can be either a string
or an object and which can only be executed by one thread at the same time (Vogel,

2013).
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Below, we show a piece of Java code that demonstrates the definition and

declaration of the ‘MessageQueue’ class for adding and taking out incoming messages of

the queue:
1 protected class MessageQueue {
2 Queue<Message> messages = new LinkedList<Message> () ;
3
g public synchronized void put (Message m)

{

6 messages.add (m) ;
7 notify();
8 }
9 public synchronized Message getNext ()
10 {
11 try {
12 while (messages.isEmpty())
13 {
14 wait();
15 }
16 } catch (InterruptedException e){ e.printStackTrace();}
17 //The element to be removed
18 Message m = messages.remove () ;
19 return (m);
20 }
21 }

The put method:

The put method of the MessageQueue object is called in the outer class. When
this method is called, it adds the incoming message into the queue, and notifies the
event-processor thread that tries to get incoming messages from the buffer, if there are

any.

The getNext method:

The getNext method is called by the event-processor thread in the run method.
It has a continuous while loop that, if the queue is empty, invokes the wait method from
the Object class, and event-processor thread which is trying to consume an incoming
message from an empty queue will wait until a message is added to the head of queue.
If the queue is not empty, then this method will skip the while loop and remove the
message from the head of the queue, and send back a message to the "main class," if

there is any.

4.2.4 Message Accepting Methods

When a QSM responds to the occurrence of events that are usually but not
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always outside of the context of the state machine itself and created by any component

of the system, a message-accepting method would then be called.

The message-accepting method is named after the event name. If the method has
arguments, then it will create a Vector in which the arguments are added. Then, the
incoming message would be added to the queue by calling the put method of the

‘MessageQueue’ object. For example, if a QSM has an event as:

el -> sl;

In Java code, the event-handling method (called when an event is taken from the
queue in order to process a transition) is declared as follows:

public boolean _el(){}

The message accepting method (that adds an event to the queue and is called by

external code such as another state machine) is declared as follows:
public void el(){}

[f the method without the leading underscore is called, a message is added into
the message queue by calling the put method of the message queue object. An example
of a message accepting method for the event el with no parameters for the example of

the QSM class shown in Figure 4.10:

public void el ()

{
queue .put (New Message (MessageType.el M, null));

SJoudbd WNh R

}

The following example of the message accepting method shows the case when

the queued state machine’s event el has one parameter that is (eventName) of the type

‘String’ as:
1 [
2 //messages accepted
3 e e L e L L e e
4 public void el (String eventname) {
5 Vector v = new Vector (1l);
6 v.add (0, eventName) ;
7 queue.put (New Message (MessageType.el M, v));}
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The example below of the message-accepting method shows the case when the
queued state machine’s event e3 has two parameters (id and nextState) of types

‘Integer and String’ as:

public void e3 (Integer id, String nextstate) {
Vector v = new Vector (2);
v.add (0, id);
v.add (1, nextState);
queue.put (New Message (MessageType.e3 M, Vv));
}

WoOoOJoUldWNR

4.2.5 Removing a Message From the Queue — ‘run’ Method
The event-processor thread has a run method that is used to define the behavior

of the thread that is to remove incoming messages from the queue and then process

them.
1 @Override
2 public void run () {
3 boolean status=false;
4 while (true)
5 {
6 Message m = queue.getNext () ;
7 switch (m.type)
8 {
9 case el M:
10 status = el ();
11 break;
12 case e2 M:
13 status = e2();
14 break;
15 case e3 M:
16 status = e3();
17 break;
18 case e4 M:
19 status = ed();
20 break;
21 default:
22 }
23 if(!status) {
24 // Error message is written or exception is raised
25 }
26 }
27 }

In the run method, a Boolean variable called ‘status’ is defined and declared to
have a value ‘false." When an incoming message is removed from the queue and
matches one of the message types to be processed, then the event-handling method will

return ‘true’'.
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A continuous while loop (infinite loop) in the "run" method is defined that
invokes the ‘getNext’ method to get an incoming message from the message queue and
process it if there is any. Otherwise, the ‘getNext’ method will wait until the next
available message is ready. The while wait loop with notification is a standard way of
synchronizing concurrent processes. The switch statement is used inside the while
loop to compare the incoming message that is removed from the head of the queue with
all the defined message types. It is always a best practice to have a default statement in
a switch statement even if it is an empty statement. If the removed message matches
one of the message types, it will then execute the event method that matches this
message. If it does not, then the status will be kept assigned as ‘false’ and then we will
skip the switch statement and execute the ‘if' condition that is now valid. In the ‘if’
condition body, there is a comment to indicate that this message will be ignored (i.e. it
will not be processed). If a message is ‘ignored’ by a state machine, then it does nothing
according to UML (there is a comment saying that /* write an error message or raise
exception */). In the current implementation of the basic state machine, it returns

‘false.’

A complete sketch of the Java code for the queued state machine model depicted

in Figure 4.10 after applying all changes is provided in Appendix B.1.

4.3 Pooled State Machine (PSM) in Umple

A pooled state machine (PSM) has a different semantic as compared to queued
state machines because it does not strictly obey FIFO order for consuming the messages
passed between state machines. Instead, it removes the first message that matches an
event that can be triggered in the current state by searching down all the messages in

the queue. The pooled state machine hence resolves the unspecified reception situation.

The design of the pooled state machines also has a number of issues related to
the design decisions that we made. If we take a look at the example mentioned above of
a state machine that has two states s1 and s2 and two transitions in Figure 4.10, we
followed the same steps we took for developing the QSM code generator to derive the

implementation from this model.
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The pseudocode of what the Java code should look like is shown below:




63 iterate through messages and remove the first message that matches
64 one of the message types for the current state in the state machine,
65 otherwise return null

66 }

67 }

68 //messages accepted

69 el () {

70 add a message to the message pool

71 }

71 e2 () {

72 add a message to the message pool

73 }

74 event-processor thread run method ({

75 do forever using while(true) loop {

76 check if the message pool is not empty, if yes, remove a
77 message from the head of message pool. Otherwise, waiting for an
78 event to be added into message pool

79 switch (message type) {

80 compare message type with each *even name M*

81 If it matches:

82 call event method *namex*

83 break

84 }

85 }

86 }

87 }

Listing 4.2: Pesudocode for pooled state machine (PSM)

The following issues cover the main points of the design of Java code for the

implementation of the above state machine model that applies to pooling logic.

4.3.1 Enumerations of Message Types

In a PSM, we create and define enumerations of messages for all events of the
state machines in the same way as for QSM. If one state or substate of the state machine
has no regular or timed events, then an extra message type called ‘null_M’ is defined as
the enumerated value in Message Type. For example, the enumeration of messages for
the PSM is:

//enumeration type of messages accepted by X

enum MessageType { el M, e2 M, e3 M, e4 M, null M }

4.3.2 Inner Class: MessagePool Class
The Message class is created for PSM in the same way as in the case of a QSM. To
enable a PSM, we add a pooling mechanism to the getNext method in the MessagePool

class.
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To do that, a HashMap is created in which a set of messages is defined for every
state of the machine. Below, we present the sample code for creating and initializing the
‘stateMessageMap' which maps any state to a set of message types (between the ()

separated by commas).

In the example below, there is one PSM, and each state responds to only one
message type except for the final state that has no events. The resulting sets will be

very small in this example but could be much larger in a more sophisticated example.

1 // Map for a X pooled state machine that allows querying which
2 events are possible in each map

3 public static final Map<Object, HashSet<MessageType>>

4 stateMessageMap = new HashMap<Object, HashSet<MessageType>> () ;
5 static {

6 stateMessageMap.put (Sm.sl, new

7 HashSet<MessageType> (Arrays.asList (MessageType.el M)));

8 stateMessageMap.put (Sm.s2, new

9 HashSet<MessageType> (Arrays.asList (MessageType.e2 M)));

10 stateMessageMap.put (Sm.s3, new

11 HashSet<MessageType> (Arrays.asList (MessageType.e3 M)));

12 stateMessageMap.put (Sm.s4, new

13 HashSet<MessageType> (Arrays.asList (MessageType.e4 M)));

14 stateMessageMap.put (Sm.s5, new

15 HashSet<MessageType> (Arrays.asList (MessageType.null M)));

16 |!

If one or more state or substates have no events, either regular or timed, then
that state or substate will have ‘null_M’ message. We would use it by simply calling

stateMessageMap.get(state).contains(msg.type)

We use a HashMap to define a set of messages for each state of the state machine
to store a pair of key and value (Singh, 2013). Note that HashMap does not consider the

order for inserting and storing the returned key-values pairs (Singh, 2013).

The ‘getNext’ method calls ‘getNextProcessableMessage’ method to searches
down the pool and find the first event that can be responded to in the current state in
order to return a message that belongs to set of the messages of the state. The returned
message will then be removed from the pool. So, this method is needed to test each
event in the pool. If there is no message to be returned, then the pool blocks waiting for
another event to be triggered. When a new event is being added to pool while the
machine is blocked, the method to search each event in the pool will need to be called

to determine if the block should be released.
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A sketch of the getNext method to implement the pooling mechanism is:

1 public synchronized Message getNext () {

2 Message message=null;

3 try {

4 message=getNextProcessableMessage () ;

5 while (message==null)

6 {

7 wait () ;

8 message=getNextProcessableMessage () ;

9 }

10 } catch (InterruptedException e) { e.printStackTrace(); }
11 // return the message

12 return (message);

13 |}

14 public Message getNextProcessableMessage () {

15 // Iterate through messages and remove the first message that
16 // matches one of the Messages list

17 // otherwise return null

18 for (Message msg: messages)

19 {

20 if (stateMessageMap.get (getSm()) .contains (msg.type))
21 {

22 //The element to be removed

23 messages.remove (msg) ;

24 return (msg);

25 }

26 }

27 return null;

28 |}

4.3.3 Removing a Message From the Pool - ‘run’ Method

The event-processor thread has to check which state the machine is in. Then it
asks the pool to give the next message by providing it with the list of messages that are
acceptable for this current state and processes this message. If there were no messages

in the pool, it would wait until a message is added to the pool.

A complete sketch of the Java code for the pooled state machine model depicted

in Figure 4.10 after applying all changes is provided in Appendix B.2.

To illustrate the semantics of the two types of the state machines; queued and
pooled, we run the implementation code of model shown in Figure 4.10 to get the
outputs. After that, we compare the results to see the different implementations of

these state machines.

The following shows the comparison of queued and pooled state machines by
highlighting the main difference of their semantics and by tracing the executions of

their Java code.
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In QSM, the main thread initiates the events and puts them on the queue. The
event-processor thread takes the events of the queue and processes them (note that

this may happen concurrently with the main thread producing more events) as follows:

- elistriggered and is added to the queue, then the event-processor threads takes
el off the queue and it is processed leading to move the machine to s2.

- e2istriggered and is added to the queue (which may happen in parallel with the
actions of the event-processor thread above), then the event-processor threads
takes e2 off the queue and it is processed to move the machine to s1.

- e2istriggered and is added to the queue, then the event-processor threads takes
e2 off the queue and it is not processed; this event is ignored as it is unspecified
reception error.

- elistriggered and is added to the queue, and then the event-processor threads

takes el off the queue and it is processed to move the machine to s2.

In PSM, the main thread initiates the events and puts them into the pool. The

event-processor thread takes the events from the pool and processes them as follows:

v’ elis triggered and is added to the pool, and then the event-processor threads
takes el from the pool to it is processed leading to move the machine to s2.

v’ e2is triggered and is added to the pool (possibly in parallel with the above),
then the event-processor thread takes e2 off the pool and it is processed to move
the machine to s1.

v’ e2is triggered and is added to the pool. There is no transition in state s1 to
consume e2- therefore it is kept in the pool, and it is not processed at this time.

v’ elis triggered and is added to the pool. This event can be processed in s1 and
the event-processor thread takes el off the pool and it is processed it to move
the machine to s2.

v The state machine is in s2 and e2 is still in the pool. This event can be processed
by firing the transition leading to s1. Therefore the event-processor thread takes

e2 off the pool and it is processed to move the machine to s1.

The trace execution of above Umple examples for the queued, and pooled state
machines can be shown in Table 4.3.
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Table 4.3: Execution trace of Umple code for basic, queued, and pooled state machines

Queued State Machine Pooled State Machine
initial | s1 sl
el s2 s2
e2 sl sl
e2 s1 (e2 is added to the queue, and | s1 (e2 is unspecified event. It is
then it is taken off the queue, but | pooled but it will not be removed
it will be ignored because it is from the pool.)
unspecified reception.)
el s2 s2
(e2 is taken off the pool and it is
processed)
sl

4.4 Syntax of Umple Queued State Machine (QSM) and Pooled State
Machine (PSM)

In his Ph.D. thesis, Badreddin (2010) gives more details about the Umple state
machine grammar. He shows the different notations and symbols being used for
defining the syntax of Umple state machines. The grammar has been enhanced since
that time as Umple state machines have been extended to have many other features
such as history states, events arguments, queued state machines, pooled state

machines, and the unspecified reception handler mechanism.

4.4.1 Allowing For a Queued State Machine in Umple (QSM)

In order to allow for QSM in Umple, we first made a minor change to the Umple
state machine grammar. We modified it to accept this new feature by adding a keyword
‘queued’. As shown in the grammar in Listing 4.3, the state machine can be defined as
queued. The 7 symbol indicates that defining a state machine as queued is optional.
Also, the grammar shows that we can have QSM in a class or standalone to be used by
other classes. The notations and symbols used in the Umple state machine grammar are

further explained in (Badreddin, 2010) (CRuiSE, 2013).
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// State machine elements in Umple. See user manual page: BasicStateMachines
stateMachineDefinition : statemachine [=queued]? [=pooled]? [name] {
[[state]]* }
stateMachine : [ enum]]

| [[inlineStateMachine]]

| [[referencedStateMachine]]

| [[activeDefinition]]
inlineStateMachine : [=queued]? [=pooled]? [~name] { ( [[comment]]

| [[state]]

| [[trace]]

[ [=I1]

| [[standAloneTransition]])* }

Listing 4.3: Umple grammar to specify ‘queued’ and ‘pooled’ keywords by CRuUiSE, 2013

To specify a state machine to be queued, the user writes the keyword ‘queued,’
followed by the name of the state machine, then a block in curly brackets {}’ containing
a set of states and events. To define a standalone state machine, the above is preceded
by the keyword ‘statemachine.’ Inline state machines in Umple are defined inside a
class, whereas standalone state machines are defined outside of classes, and later
applied to multiple classes.

The examples below illustrate how we define a queued state machine (QSM) in a
class (Listing 4.4), and how to define one as a standalone state machine (Listing 4.5).

We do not define a class for this state machine.

1 class X {
2 queued sm {
3 sl {
4 el -> s2;}
5 s2 {
6 e2 -> sl;}
7 }
8 }
Listing 4.4: Example of Umple code for inine queued state machine
1 statemachine queued sm{
2 Statel{
3 el -> State2;}
4 State2{
5 e2 -> Statel;}
6 }

Listing 4.5: Example of Umple code for stand-alone queued state machine
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4.4.2 Allowing for a Pooled State Machine in Umple (PSM)
Likewise, we modified the Umple state machine grammar to allow for the

‘pooled’ keyword in both inline and standalone state machines as shown in Listing 4.3.

4.4.3 Writing Queued and Pooled Keywords on the Same Line to Define a State Machine
in Umple

Queued and pooled state machines have different semantics; thus, a user must
not define a state machine to be queued and pooled at the same time. If the user writes
both queued and pooled keywords on the same line before the definition of the state

machine as in Listing 4.6, the Umple compiler will detect this error and raise an error

message.
1 class X {
2 queued pooled sm {
3 sl {
4 el -> s2;}
5 s2 {
6 e2 -> sl;}
7 }
8 }

Listing 4.6: An error message raised if a state machine is defined as queued and pooled at same
time

4.5 Semantics of Umple Queued State Machine (QSM) and Pooled State

Machine (PSM)

The Umple metamodel is built using Umple itself (Badreddin, 2010). Also, the
Umple metamodel of a state machine is similar to the UML 2.4.1 meta-model; however,
it has some elements that do not exist in the UML 2.4.1 meta-model, and only covers a
subset of UML. In his Ph.D. thesis, Badreddin (2010) presents more details about the

different components of the Umple metamodel.
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Figure 4.11: Umple state machine metamodel

Figure 4.11 illustrates the Umple metamodel for state machines, and as our
work is specifically related to two classes of the Umple metamodel, we take a closer

look at them to show the changes that we made.

The focus is on the ‘StateMachine’ and “Event’ classes. Regarding the
‘StateMachine’ class, we have added two Boolean variables ‘queued’ and ‘pooled’ to be
used to define a state machine as queued or pooled. The state machine can be defined
to be queued, pooled or plain. We cannot define a state machine to be both queued and

pooled at the same time because each concept has different semantics.

Moreover, we change the ‘Event’ class to have an ‘unspecified’ Boolean variable
indicating it is a special event and it will be used to handle unspecified reception errors

that may occur at various states.

86



4.6 Common Issues in Umple Queued State Machine (QSM) and Pooled State
Machine (PSM)

4.6.1 Issue with Timed Transitions in Queued or Pooled State Machines

To illustrate the semantics of a timed transition in case of QSM and PSM, the
examples in Figure 4.12 and Figure 4.13 are provided. The first example in Figure 4.12
shows the case when a state of the machine has only a timed transition. The other
example in Figure 4.13 demonstrates the semantics of the state machine when a state
has a timed transition and another regular event.

If the execution trace of the example in Figure 4.12 is assumed to be the

sequence events <e(, e2>, then unspecified receptions will be detected as follows:

1 class X {
2 sm {
3 sO {
0 4 e0 -> sl;
5 }
6 sl {
e0 7 after (1) -> s2;
8 }
( sl 9 s2 {
10 e2 -> s3;
11 }
aftet 12 s3 {}
/ 13 }
[ s2 14 public static void main(String [ ] args) {
15 X x = new X ();
% 16 x.e0();
11 x.e2();
71 }
s3 18 }

Figure 4.12: Specifying a timed transition in state (s1) without any other events

In a basic state machine: When event ‘e(’ occurs, the transition is fired leading the
machine to state (s1). Then, event ‘e2’ occurs and it is ignored because the machine is
now in the state (s1) and there is no transition to consume ‘e2’. The event ‘e2’ is
considered as unspecified event. When the machine enters state (s1), timer starts; it
executes for a specific delay (one second). After one second, the timed event is
processed: the timer stops, and the machine moves to state (s2) waiting for e2.

In a queued state machine (QSM): It processes the events in the same order as the

basic state machine. When event ‘e0’ occurs, it triggers the transition causing the
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machine to change to state (s1). The event ‘e2’ then occurs and it is added to the queue.
[t is then removed but it will be ignored and will not be processed because there is no
transition to consume ‘e2’. When the machine enters state (s1), timer starts; it executes
for a specific delay (one second). After one second, the timed event is added to the
queue. It is then removed from the queue and processed: the timer stops, and the
machine moves to state (s2).

The semantics of 'after()' transition is that if no event has yet caused a
transition, then the state will 'timeout' and takes the specified transition. So even in the

queued case, we want to process events, and some will be ignored.

In a pooled state machine (PSM): When the event ‘e0’ occurs, it triggers the transition
leading the machine to state (s1). The event ‘e2’ occurs and it is added to the pool.
There is no transition to consume ‘e2’; therefore, it is saved in the pool. When the
machine enters state (s1), timer starts; it executes for a specific delay (one second).
After one second, the timed event is added to the pool. It is then removed from the pool
and processed: the timer stops, and the machine moves to state (s2). The machine is
now in the state (s2) and it has a transition to consume the saved event ‘e2’. The event
‘e2’ is removed from the pool and is processed, leading the machine to state (s3).

The execution trace of the example in Figure 4.13 is assumed to be the sequence

events < e0, el, e3> as follows:

1 class X {
2 sm |
3 sO |
4 e0 -> sl1; }
s0 5 sl {
6 after (1) -> s2;
e0 7 el -> s3; }
Y 8 s2 |
sl 9 e2 -> s4; }
10 s3 |
after(1) \el i €3 —> s5; }
12 sd4 {}
13 s5 {
[523[53j 14 ed —> s6; }
15 s6 {}
e2 e3 16 }
117 public static void main(String [ ] args) {
( s4 )[ sS j 118 X x = new X();
19 x.e0();
ba 20 x.el();
21 x.e3();
22 }
s6 23 }

Figure 4.13: Specifying a timed transition in state (s1) with other event (e1)
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In a basic state machine: When the event ‘e0’ occurs, the transition is triggered
leading the machine to state (s1). The state (s1) has two transitions; timed transition
and a state transition. As the machine enters the state (s1), the timer starts but the
event ‘el’ occurs, so the timer interrupts (it cancels) and the event el is processed,
leading the machine to move to state (s3). The event ‘e3’ occurs and the machine is now
in the state (s3). The transition is fired and the machine moves to the state (s5).
In a queued state machine (QSM): It processes the events in the same order as the
basic state machine does.
In a pooled state machine (PSM): The event ‘e0’ occurs, it is added o the pool. It is then
removed from the pool and processed, leading the machine to state (s1). The state (s1)
has two transitions; timed transition and a state transition. When the machine enters
the state (s1), the timer starts but the event ‘e1’ occurs. It is added to the pool. It is then
removed from the pool and processed. The timer interrupts (it cancels) and the
machine moves to state (s3). The event ‘e3’ occurs and the machine is now in the state
(s3).Itis added to the pool. It is then removed from the pool and the transition is fired.
The machine moves to the state (s5).

We identified two problems occurred when implementing timed transitions for

all types of machines.

The first problem is that defining timed transitions in nested state machines
were not enabled in the original Umple state machine semantics. The original Java code
generated from an Umple nested state machine did not work properly in case the
substates have timed transitions. The code just had a method called " timeout" and it
did not have any handling mechanism to deal with the timer; that is, the code is not

generated properly.

The solution for this problem is to modify the Java code generated from the state

machine to implementing the timer mechanism.

The second problem is that in case of PSM, if any event is saved in the pool
because it is unspecified event, and the timed transition is triggered after a specific
delay leading the machine to the target state where the event would be consumed, then

this event would not be removed from the pool, and they would not be processed. To
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clarify, the event-processor thread will not remove the saved events from the pool

when the machine is in the state where the events can be consumed.

To solve this problem, we proposed three different solutions to allow for
handling unspecified receptions that occur before the timed events are triggered, in

order to overcome this problem.

First Solution: The first alternative is that when the machine enters a state that has a
timed transition, the timed event would not be added to the queue/pool. This is the

same semantics as an instantaneous transition in case of QSM and PSM.

This solution will not work in the case of PSM because the event-processor
thread will not remove the saved events from the pool when there are transitions to

consume them. In other words, the saved events will stay in the pool forever.

Second Solution: The second alternative is that the main thread sleeps and waits 'a
little longer' time than the timer thread's time delay. Thus, the timer thread calls the
timed event to add it to the queue/pool. The event-process thread then removes the
timed event form the queue/pool and processes it. Then the main thread wakes up and
resumes. This means that any other actions to be done by the main thread are delayed,
and the events should supposedly occur in the right order. To make this change, we
added " try {Thread.sleep((time*1000)+10);} catch (InterruptedException e) {}" to
every ‘startTimeoutHandler' method. This solution seemed to solve the problem, but it

still had some issues.

Disadvantage of this solution: In the main thread, we can add
Thread.sleep((time*1000)+10) to delay creating an event until the timed transition is
triggered. Firstly, we should never rely on sleeping a thread for a measured amount of
time because this leads to a race condition. The extra time, for example
(time*1000)+10), is not necessary 'enough' as we expect because thread may take
longer time and then this will bring us back to the same problem. Secondly, we do not
want to delay the main thread. There should not be any artificial delays in the system
because it breaks performance. We do, in fact, want the main thread to be able to go on

and trigger other events.
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For these reasons, we choose the third solution for the implementation of timed

transitions in QSM and PSM.

Third Solution: The third alternative is that in case of QSM and PSM, the timer thread
calls the timed events to be injected into the queue/pool. This should work totally
transparently as if any other thread had done it. In other words, when the timer
thread(s) wake up, it calls the timed events. The timed events are then injected into the
queue/pool. However, the timer thread(s) should be cancelled if one of the other events
in the state with the timer is triggered (processed from the queue) first. This semantics
is the same as the timers in SDL. However, SDL timers must be explicitly reset if they

should become inactive (SDL-RT, 2013).
In a basic state machine, in normal operation:

- Thread 1 - initiates events and processes them
- Thread 2 - Possible timer thread(s) - each initiates an event at the end of the

timeout period, processes it, and then cancels.
In a queued state machine (QSM) or pooled state machine (PSM):

- Thread 1 - initiates events and puts them on the queue
- Thread 2 - Event-processor thread - takes events from the queue/pool and
processes them

- Thread 3 - Possible timer thread(s) - should put events on the queue/pool

In the case of basic state machines, there is normally only one thread to initiate
the state machine events. If there is more than one thread, there can be undefined
behavior due to non-thread-safe code. Also, there can be more than one timer thread
sequentially but ideally only one at a time. Umple has not been designed yet to deal
with several timeouts at the same time, which could be the case in concurrent states.
Users of Umple should avoid this. However, the design of QSM and PSM allows for more

than one thread of each type (thread 1, thread 2, and thread 3).

4.6.2 Issue with Instantaneous Transitions in Queued or Pooled State Machine

Instantaneous transitions (also called auto-transitions) in a basic state machine
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in Umple are transitions that are processed upon entry to a state that has no events.
Instantaneous transitions are supposed to transition automatically from one state to
another state immediately after completing entry actions or upon completion of a do
activity if the state has ‘entry’ action or ‘do’ activity, or simply transition to the other
state immediately if there is no ‘entry’ action, ‘do’ activity or guards on it. [t can have a
transition action to be executed when the transition is fired or a guard that may block
the transition from happening. To simplify certain logic, the instantaneous transition
would be typically done in a state that has no other events. Also, the instantaneous
transition has a priority to be fired if a state has other events unless it has a guard that

prevents it from occurring.

[t is an important design issue to decide what to do in each of the various cases
of having instantaneous transitions in QSM and PSM: an instantaneous transition after
‘do’ activity, an instantaneous transition with guard, and an instantaneous transition

with no guard.

Most of the time we use such transitions after a do activity, to initiate a
transition after the activity completes. Usually there would be a guard. If there is no
guard, there is no way any other event can even get in the queue/pool before the

transition is taken.

There are two design options to deal with the case of instantaneous transitions
in QSM and PSM. The first option is to allow the instantaneous transitions in case of
QSM and PSM and give them a priority to be fired if there are other regular events in
the same state, but they are not added to the queue/pool and, as a result, the event-
processor thread does not check for them while taking the events from the queue/pool.
This means that the instantaneous transitions of QSM or PSM are always taken unless
guards preclude them. The second option is to disallow the instantaneous transitions in

QSM and PSM.

We implemented the first option because if users explicitly code the
instantaneous transitions, then they must have a reason for them. If the state machine
is queued or pooled, the instantaneous transitions will not be added to the queue/pool;
instead, they would be fired directly.
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Chapter 5 Implementation of Queued and Pooled State Machines

5.1 Goals For Code Generation

The Umple QSM and PSM capability allows developers to focus on their models
and to satisfy their development needs without editing the underlying generated Java
code. The developers simply edit the Umple code to make any necessary changes. Our
goal in this research has been to ensure that the generated Java code from Umple code
is efficient and satisfies the queued/pooled state machines semantics. Also, we wanted
to ensure that the generated code should be readable and understandable, so auditors

and developers can easily verify it.

5.2 Example of Queued, and Pooled State Machines in Umple

Below is an example of Umple code containing queued and pooled state

machines that we will be using in later discussion.

1 //Queued state machine 1 //Pooled state machine
2 class X { 2 class X {

3 queued sm { 3 pooled sm {

4 sl { 4 sl {

5 el -> s2; 5 el -> s2;

6 } 6 }

7 s2 { 7 s2 {

8 e2 -> s3; 8 e2 -> s3;

9 } 9 }

10 s3 { 10 s3 {

11 e3 -> sl; 11 e3 -> sl;

12 } 12 }

13 } 13 }

14 public static void 14 public static void
15 main(String[] args) { 15 main(String[] args) {
16 X x=new X () ; 16 X x=new X () ;

17 x.el(); 17 x.el();

18 x.e2(); 18 x.e2();

19 x.e3(); 19 x.e3();

20 x.e3(); 20 x.e3();

21 x.el(); 21 x.el();

22 x.e2(); 22 x.e2();

23 } 23 }

24 } 24 }

Listing 5.1: An Umple code example of basic, queued, and pooled state machines
The state machine written in Listing 5.1 has three states: s1, s2, and s3. Each
state has an event: state s1 has the event el that transitions to s2, state s2 has the event

e2 that transitions to s3, and state s3 has the event e3 that transitions to s1.

93



5.3 Comparisons of Generated Java Code Between Umple Basic, Queued, and

Pooled State Machines

Taking the example illustrated in Listing 5.1, we present the different

implementations of the three types of state machines. The Umple program starts

executing at the main method, where the code is compiled and run with a series of

events in order to highlight the differences among the original and proposed semantics.

We call the state machine events over and over in a random order for the purpose of

validation, and trace the results to see that the system is getting into the correct states

at all times. The trace execution of above can be shown in Table 5.1:

Table 5.1: Execution trace of Umple code that is shown in Listing 5.1

Basic State Machine Queued State Machine Pooled State Machine
initial | s1 sl sl
el -s2 (el is called). -s2 (elisadded tothe |-s2 (el isadded to the
queue and then pool and then removed
removed from the from the pool and called).
queue and called).
e2 - s3 (as above). - s3 (as above). - s3 (as above).
e3 - s1 (as above). - s1 (as above). - s1 (as above).
e3 -s1 (e3 isignored -sl (e3isadded tothe |-s1 (e3 is unspecified. Itis
because it is queue and then pooled but it will not be
unspecified removed and ignored removed from the pool.)
reception). because it is an
unspecified reception).
el - s2 (el called). -s2 (elis called and -s2 (el is added to the
added to the queue and | pool and then removed
then it is removed from | from the pool and
the queue and called). processed; e3 remains on
the pool).
e2 -s3 -s3 -s3 (e2 is added, then
removed and called)
- s1 (e3 is then taken off
the pool and called)

Table 5.1 illustrates the different semantics and implementation of basic,

queued, and pooled state machines. We see how each state machine behaves when a

series of events are triggered.

94




5.4 Simple QSM and PSM in Umple

The queued and pooled state machines can be defined to be simple state
machines that contain a set of states that do not have substates. More details about the
syntax and semantics of a simple state machine in Umple are provided in Chapter 4 and

in (Badreddin, 2010).

5.4.1 Examples of Simple QSM and PSM in Umple

In the following subsections, we show examples of defining simple state
machines with queuing and pooling semantics in Umple. The first part shows the
examples of queued and pooled state machines in case where their events do not have
parameters, and the other part illustrates cases of queued and pooled state machines in

which their events do have parameters. We give a brief description of both examples.

5.4.1.1 Case Where State Machine Events Have No Arguments

The state machine in Figure 5.1 has events with no parameters. There is no
special notation in the diagram that indicate that the state machine is queued or pooled.
The other team members will take care of adding the notation on the state machine
diagram to indicate if it is queued, pooled, or plain. However, in the Umple code, the
user has to specify that the state machine is queued or pooled by writing ‘queued’ or

‘pooled’ keyword, respectively, before the definition of the state machine.

In addition to having no event parameters, the queued and pooled state
machines illustrated in Figure 5.1 are simple, meaning that they do not have substates.
The state diagram has five states: s1, s2, s3, s4, and s5. Each state has one transition
except the final state s5 that does not have any events. The initial state is s1. There are

4 events: el, e2, e3 and e4.
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1 class X{

2 queued sm{
3 sl {

4 el ->
5 s2 {

6 e2 —->
7 s3 {

8 e3 ->
9 s4 {

10 ed ->
11 s5 {}
12 }

13 }

1 class X{
2 pooled sm{
3 sl {

s2;} 4 el -> s2;}
5 s2 {

s3;} 6 e2 -> s3;}
7 s3 {

s4;} 8 e3 -> s4;}
9 sd4 {

s5;} 10 ed4 -> s5;}
11 s5 {1}
12 }
13 }

Figure 5.1: A simple state machine (events with no arguments) as shown in

UmpleOnline

5.4.1.2 Case Where Some State Machine Events Have Arguments

The examples below are defined in Umple in the same way as defining the above

example. The only difference is that the queued and pooled state machines’ events in

the below examples have parameters.

As shown in Figure 5.2, both events: el and e3 have parameters. When the Java

code is generated from the Umple code of this diagram, the public event-handling

methods that are generated from events el and e3 have arguments as follows:

Event el has the parameter:

Event e3 has the parameters:

String eventName

Integer id and String nextState.
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class X{
pooled sm{
sl {
el (String
eventName) -> s2;
}
s2 |
e2 -> s3;
}
s3 {
e3 (Integer
id, String
nextState) -> s4;
}
s4 |
ed -> s5;

1 class X({

2 queued sm{

3 sl {

g el (String
6 eventName) -> s2;
7 }

8 s2 |

9 e2 -> s3;
10 }

11 s3 {

12 e3 (Integer

13 id, String

14 | hextstate) -> s4;
15

16 )

17 sd |

18 ed -> sb;
19 }

20 85

21 }

22 }

23 |}

Figure 5.2: A simple queued state machine (events with arguments) as shown in

UmpleOnline
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5.4.2 Java Code Generation For Simple QSM and PSM

5.4.2.1 Case Where State Machine Events Have No Arguments
The Umple language has already enabled the users to generate code from Umple
state machines in Java and C++. In our thesis, we work on generating the pieces of code

in Java that support the queuing and pooling logics.

The generated Java code the example shown in Figure 5.1 (the case of the QSM

with events lacking parameters) is shown in Appendix B.3.

5.4.2.2 Case Where Some State Machine Events Have Arguments

Java code generated from the example in Figure 5.2 is given in Appendix B.4. The
difference can be seen in the pieces of code that are related to the event-handling
methods, message-accepting methods, and the ‘run’ method. More information about

the parameters of queued or pooled state machine events is presented in section 5.8.1.

We display the parts of the code that are influenced by using the queued or
pooled state machine events' parameters because we want to highlight the difference
when generating Java code for the events whether they have parameters or not. First,
the Java code generated from events el and e3 in Figure 5.2 results in generating the

event-handling methods that have the same arguments as the state machine events:

1 public boolean el(String eventName)
2 {

3 boolean wasEventProcessed = false;
4

5 Sm aSm = sm;

6 switch (aSm)

7 {

8 case sl:

9 setSm(Sm.s2) ;

10 wasEventProcessed = true;

11 break;

12 default:

13 // Other states do respond to this event
14 }

15 return wasEventProcessed;

16 }

17 }
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Second, the message-accepting methods generated from these two events are:

Finally, the run method looks a bit different because each message can have one
or more parameters based on the number of arguments of the event. A piece of code

generated for such purpose is shown below:

\

In Chapter 4, we provide more details about the generated Java code of QSMs

and PSMs.
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5.5 Composite QSM and PSM in Umple

As we discussed above, state machines can be categorized as simple and
composite. Composite state machines have nested and/or concurrent states. Events
that need to cause effects in every substate of the outer state do not have to be repeated

in each of the substates (CRuiSE, 2013).

In Umple, we defined multiple concurrent blocks to become active when in a
specific state by using a state machine with two substates separated by the || symbol
which indicates that both blocks will run concurrently. In Umple, the position is taken if
an event is processed in any one of the concurrent substates (or state machines) then it
is consumed. Therefore, in a pooled and queued cases, this means that generated code
needs to recognize the possibility of being in multiple states at once, and to process an

event from the queue/pool if it is received by any of the current states.

In the following subsections, we provide an example that illustrates nesting
abstractly in a queued/pooled state machine. The other example shows the case of
concurrency for a queued/pooled state machine. We then give samples of the generated

Umple code of both examples.
5.5.1 Examples of Composite QSM and PSM in Umple

5.5.1.1 Example of Umple QSM and PSM with Nested States
Figure 5.3 shows that the state machine has two states s1 and s2. The state s2
has two substates; s2a and s2b. Events el takes the system into state s2. Event e2 then

takes the system into substate s2b and event e3 takes the system into substate s2a.

1 class X {
2 queued/pooled sm {
3 sl {
4 el (String nextState) -> s2;
: .
6 s2 |
el(String n 7 s2a {
8 e2 -> s2b;
9 }
10 s2b {
11 e3 -> s2a;

12 }

Figure 5.3: A state diagram for a queued/pooled state machine with nested states as
shown in UmpleOnline
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5.5.1.2 Example of Umple QSM and PSM with Concurrent States
Figure 5.4 illustrates the case of having concurrent states for the queued or
pooled state machine. The state machine has two states: s1 and s2. The state s2 has four

concurrent substates: s21, s22, s23 and s24.

1 class X {

2 queued/pooled sm {
3 sl |

4 e-> s2;

: }

6 s2 {

; s21 {

9 el -> s22;

/ §2 \ 10 }
12 el -> s21;

13 }

23 o £ s23 {

17 e2 -> s24;
18 }

20 e2 -> s23;
& :

22 }
23 }

Figure 5.4: A state diagram for a queued/pooled state machine with concurrent states as
shown in UmpleOnline

The Umple code shown in Figure 5.4 illustrates that the queued/pooled state
machine defined here has concurrent substates that will run concurrently when the

event el and e2 are called.

5.5.2 Java Code Generated From Umple Composite QSM and PSM Examples
We aim to show that generated Java code for both cases mentioned above will

have the same style of the generated Java code described in Chapter 4.

By having a closer look at specific aspects of the Java code generated from the
examples in Figure 5.4, we are concerned with the generation of enumerations of the
messages types for both states and substates: In a QSV, it looks like the following:

//enumeration type of messages accepted by X

enum MessageType { e M, el M, e2 M }
In a PSM, it looks like the following:
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//enumeration type of messages accepted by X

enum MessageType { e M, el M, e2 M, null M }
[t shows that because the state s2 has no events, there is an extra message

‘null M' declared as an enumerated value.

In addition, we declare a set of messages for each state using a HashMap:

1 // Map for a X pooled state machine that allows querying which
2 events are possible in each map

3 public static final Map<Object, HashSet<MessageType>>

4 stateMessageMap = new HashMap<Object, HashSet<MessageType>> () ;
5 static {

6 stateMessageMap.put (Sm.sl, new

7 HashSet<MessageType> (Arrays.asList (MessageType.e M)));

8 stateMessageMap.put (Sm.s2, new

9 HashSet<MessageType> (Arrays.asList (MessageType.null M)));
10 stateMessageMap.put (SmS21.Null, new

11 HashSet<MessageType> (Arrays.asList (MessageType.null M)));
12 stateMessageMap.put (SmS21.s21, new

13 HashSet<MessageType> (Arrays.asList (MessageType.el M))) ;
14 stateMessageMap.put (SmS21.s22, new

15 HashSet<MessageType> (Arrays.asList (MessageType.el M))) ;
16 stateMessageMap.put (SmS23.Null, new

17 HashSet<MessageType> (Arrays.asList (MessageType.null M)));
18 stateMessageMap.put (SmS23.s23, new

19 HashSet<MessageType> (Arrays.asList (MessageType.e2 M)));
20 stateMessageMap.put (SmS23.s24, new

21 HashSet<MessageType> (Arrays.asList (MessageType.e2 M)));
22 }

As shown above, each state has a list of messages, except for the state s2 that

does not have an event. It has a message instead ‘null_M.'

and substates are shown below:

The message-accepting methods generated for the events defined in the state

1 [ ===mmmmmmmmee= === ===

2 //messages accepted

3 e e

4 public void e () {

5 pool.put (new Message (MessageType.e M, null));
6 }

7 public void el () {

8 pool.put (new Message (MessageType.el M, null)) ;
9 }

10 public void e2 () {

11 pool.put (new Message (MessageType.e2 M, null));
12 }

The run method will be generated to take all events defined in states and

substates of the queue/pool. All the events defined in the substates are treated in the

same way as the events defined in the outer states.
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5.6 Code Generation Templates of Queued and Pooled State Machines

We use Java Emitter Templates (JET) technology in Umple in order to determine
what the generated code should look like. Then, we compile the JET templates into Java
code which in turn generates the code in different base languages, resulting in an

instance of the Umple metamodel (Badreddin, 2010).

For each base programming language supported by Umple, there is a set of JET
templates. All JET templates for Java code can be found at:

http://code.google.com/p/umple/source/browse/#svn%2Ftrunk%2FUmpleTo]Java%

2Ftemplates

In Table 5.2, we provide a summary of new key templates added to the JET files
in order to support the generation of Java code from the queued and pooled state

machines.

Table 5.2: Key Jet templates for generation of queued and pooled state machines

Template name (*.JET) Function

queued_state_machine_queu | This is a new template added to create state machine

edEvent.jet events handling methods in the case of queued or

pooled state machines.

You can find this template at location:

http://code.google.com/p/umple/source/browse/tr

unk/UmpleTo]ava/templates/queued_state_machine
qgueuedEvent.jet

queued_state_machine_remo | This new template is added to handle the generated

valThread_run.jet code for the run method of the event-processor

thread.

You can find this template at location:

http://code.google.com/p/umple/source/browse/tr

unk/UmpleTo]ava/templates/queued_state_machine
removalThread_run.jet

queued_state_machine_inner | This new file is added to handle the code for the
_class.jet Message and MessageQueue/MessagePool inner
classes. These classes will be generated if the queued
or pooled state machine is defined.
You can find this template at location:
http://code.google.com/p/umple/source/browse/tr
unk/UmpleToJava/templates/queued_state_machine
inner_class.jet
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5.7 Test-Driven Development of QSM and PSM in Umple

We follow an agile approach that includes test-driven development (TDD) to
extend the original semantics of Umple state machines in order to apply the queuing

and pooling semantics for the state machines’ events.

To follow TDD, we first write examples of state machines in Umple in which we
use these new features. These examples are categorized into simple and composite
queued/pooled state machines. Then we generate Java code from those models. After
that, we modify the generated code by adding all parts we need such as inner classes
and so on. Finally, we end up with the final version of Java code for QSM and PSM. Now,
we follow TDD to do all these modification in Umple by extending the syntax and
semantics of Umple state machine and enabling the generator to generate Java code as
we expect.

The following subsections provide an overview of each level of the testing

process of the Umple compiler.

5.7.1 Parser Testing

The parsing testing is the first level of the testing process, in which the parser
verifies that the Umple code is parsed and tokenized correctly (Badreddin, 2010). As
illustrated in Figure 5.5, Forward (2010) summarized the steps of the process of testing

the Umple parser.

\‘ s -
[ Umple Source ’_{ Umple Parser Tokens Tol:en:;atlon
) | esting

J .

(- —

Figure 5.5: Process of the Umple parsing test
For the purpose of supporting the ‘queued’ and ‘pooled’ features in Umple, we
first modify the Umple state machine grammar to accommodate these change by adding
the keywords ‘queued’ and ‘pooled.' To do that, we change a file called
‘umple_state_machines.grammar’ in ‘cruise.umple’ project to add the keywords ‘queued’
and ‘pooled’ to the following Umple state machine grammar rules:

stateMachineDefinition and inlineStateMachine. We have to add the ‘queued’ and
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‘pooled’ keywords to the stateMachineDefinition rule that allows for declaring a state
machine independently of the class. Also, we add the queued and pooled keywords to

the inlineStateMachine rule that allows for declaring a state machine inside a class.

After that, we need to add separate test cases to ensure that the modifications
we made for both QSM and PSM are parsed correctly into required tokens. The reason
for this is because we will use these tokens to populate the Umple metamodel related to

QSM and PSM. The Umple code to be parsed for QSM is shown in Listing 5.2 as:

1 class X

2 {

3 queued sm

4 {

5 sl {

6 el -> s2;
7 }

8 s2 |

9 e2 -> sl;
10 }

11 }

12 }

Listing 5.2: Umple code for a queued state machine

To parse the above Umple code, we need to add a test to the
‘UmpleParserStateMachineTest.java’, which is the key file for parsing Umple state

machine elements:

1 public void queuedStateMachine ()

2 {

3 assertParse ("108 queuedStateMachine.ump", " [classDefinition] [name:Que
4 uedSM] [stateMachine] [inlineStateMachine] [queued:queued] [name:sm] [sta
5 te] [stateName:Statel] [transition] [event:el] [stateName:State2] [state]
6 [stateName:State2] [transition] [event:e2] [stateName:Statel]") ;

7 UmpleClass ¢ = model.getUmpleClass ("QueuedSM") ;

8 StateMachine sm = c.getStateMachine (0);

9 Assert.assertEquals (true, sm.isQueued()) ;

10 Assert.assertEquals ("sm", sm.getName()) ;

11 Assert.assertEquals (2, sm.numberOfStates())

12 State statel = sm.getState(0);

13 Assert.assertEquals ("Statel", statel.getName());

14 Assert.assertEquals (1, statel.numberOfTransitions());

15 Transition tl = statel.getTransition(0) ;

16 Event eventl = tl.getEvent();

17 Assert.assertEquals ("el", eventl.getName())

18 State state2 = sm.getState(l);

19 Assert.assertEquals ("State2", state2.getName());

20 Assert.assertEquals (1, state2.numberOfTransitions());

21 Transition t2 = state2.getTransition(0) ;

22 Event event2 = t2.getEvent();

23 Assert.assertEquals ("e2", event2.getName()) ;

24 }

Listing 5.3: Parser test for a queued state machine
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When this test runs, the parser analyzes the above Umple text and generates the

tokens.

Currently, there are about 13 test cases that are related to testing the parsing for

QSM and PSM, each covering different issues. You can find those test cases at:

http://code.google.com/p/umple/source/browse/#svn%2Ftrunk%2Fcruise.umple%?2

Ftest%?2Fcruise%2Fumple%2Fcompiler

5.7.2 Metamodel Testing

At this level, we verify that the metamodel of Umple is being populated correctly
with different Umple constructs. It ensures that Umple maintains an accurate internal
representation for the input Umple model; ensuring that the input model, after being

correctly parsed, populates the correct elements into an instance of the metamodel

(Badreddin, 2010).

Regarding QSM and PSM, we adapt the Umple state machine metamodel to
detect the keywords ‘queued’ and ‘pooled’ by adding the following code to the
Metamodel in the key file ‘StateMachine.ump”:

1 Boolean queued
2 Boolean pooled

false;
false;

Listing 5.4: Umple metamodel (StateMachine class)

Then, we change the parser to set these variables to ‘true’ when the ‘queued’ or
‘pooled’ variable is encountered. The file ‘UmplelnternalParser_CodeStateMachine.ump’
is responsible for processing state machine statements when they are parsed. It
analyzes and populates the required Umple element in the metamodel, which in this
case are the keywords ‘queued’ and ‘pooled." Below are the pieces of code added to the
method called ‘populateStateMachine’ in the

‘UmplelnternalParser_CodeStateMachine.ump”

if (stateMachineToken.is ("queued"))

{

sm.setQueued (true) ;

}

if (stateMachineToken.is ("pooled"))
{
sm.setPooled (true) ;

}

WoJdJoUlbd WN KL
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Also, we add these pieces of code to the ‘analyzedReferencedStateMachine’
method called in UmplelnternalParser_CodeStateMachine.ump, which helps analyzing
the state machine tokens, and when queued or pooled is detected, it will set the queued
or pooled variable to true. This is because we can define a state machine inside a class,
and also can define a standalone state machine.

After that, we add JUnit tests to ‘StateMachineTest.java’ to check that the

keywords queued and pooled are populated correctly.

if (stateMachineToken.is ("queued")) {
sm.setQueued (true) ;

}

if (stateMachineToken.is ("pooled")) {
sm.setPooled(true);

}
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Also, we modify the tests we have added to ‘UmpleParserStateMachineTest.java’

to parse the keywords ‘queued’ and ‘pooled’ by adding the following code:

1 Assert.assertEquals (true, sm.isQueued()) ;

1 Assert.assertEquals (true, sm.isPooled()) ;

In addition to documenting how the system behaves under normal conditions, it
is important to document how it behaves in abnormal scenarios (Forward, 2010). One
must document the situation when preconditions are not satisfied. For instance, a test
case in Listing 5.5 was written to detect the situation when a QSM has no events which

results in a warning notification indicating that there are no events to be queued.

1 @Test

2 public void queuedStateMachine pooledStateMachine noEvents () {

3 assertHasWarning ("106 queuedStateMachine noEvents.ump", 0, 56, new
4 Position("106 queuedStateMachine noEvents.ump", 2, 2, 16));

5 assertHasWarning ("106 queued nestedSM noEvents.ump", 0, 56, new

6 Position("106_queued_ne§tedSM_HoEvents.Emp", 3, 2, 24));}

Listing 5.5: Queued state machine with no events metamodel test

Error and Warning messages are emitted by using ‘setFailedPosition’ and
"assertHasWarning’ methods that take as arguments the message number, the location
in the parse results and any positional parameters to substitute into the error or

warning message (Lethbridge, Forward & Badreddin, 2012).

106



5.7.3 Template or Code Generation Testing

The input to the code generator is a populated instance of the metamodel, and
the output is the base language such as Java or another base language (Almaghthawi,
2013). The third level of the Umple testing process is template testing, otherwise
known as code generation testing. This level of testing is used to check that the
generated code in the target base language, such as Java, C++, PHP, or Ruby, matches
exactly what we expect. Creating this kind of tests makes sure that the generated code
is syntactically correct according to the base language’s syntax. Umple currently
supports various base languages such as Java, C++, PHP, and Ruby. There is a specific
test suite for each target language to verify the correctness of the language syntax

(Badreddin, 2010).

The expected target base language we are concerned with is Java; the other
languages are outside of our scope. In order to generate the expected Java code for QSM
and PSM, we have to deal with different aspects of that generated code; therefore, we
go over several steps. The proposed code that realizes the semantics of queued and

pooled state machines is explained in Chapter 4.

These template Jet files are found in the ‘UmpleToJava’ directory. Java Emitter
templates (Jet) are used to specify how Java code or code in any another language
should be generated. ‘UmpleTojava’ is used to generate Java code that is specified using

these Jet files. These templates are compiled in Eclipse by Jet, generating Java source.

The tables show all templates that are modified or changed to reach this goal,

and also the modifications that have been done are listed in Appendix C.1.

In addition, we also made the required change to ‘Generator_CodeJava.ump’
which is the core code used to generate the Java code for Umple; it is located at:

http://code.google.com/p/umple/source/browse/trunk/cruise.umple/src/Generator

CodeJava.ump

In order to generate the Java library for Thread and Timer in case of queued or
pooled state machines and to avoid any duplication that may occur, we add the

following piece of code to the ‘Generator_CodeJava.ump’ file.
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if (hasTimedEvents)
{
if (! foundQueued && !foundPooled) {
aClass.addDepend (new Depend("java.util.*"));
}
}
for (StateMachine sm : aClass.getStateMachines())

{
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if (sm.isQueued() || sm.isPooled()) {
10 genClass.addMultiLookup ("import", "java.util.*");
11 genClass.addMultiLookup ("import", "java.lang.Thread");
12 }
13 }

Also, we write pieces of code for generating a list of event message types for

both queued and pooled state machines.

After doing all these changes, now we should test them to see if the target
generated code in Java for queued or pooled state machines matches what we expect. In

particular, the generated code should be syntactically correct.

For this purpose, we add the following JUnit tests to StateMachineTest.java:

1 @Test

2 public void queuedStateMachine ()

3 {

4 assertUmpleTemplateFor ("queuedStateMachine.ump", languagePath +
5 "/queuedStateMachine."+ languagePath +".txt","Course");

6 }

7 @Test

8 public void pooledStateMachine ()

9 {

10 assertUmpleTemplateFor ("pooledStateMachine.ump", languagePath +
11 "/pooledStateMachine."+ languagePath +".txt","Course");

12 }

Listing 5.6: Template tests for queued and pooled state machines

These tests check that each file of the target base language generated from the
Umple code conforms to the syntax of the expected base language. As mentioned, we
are working with Java, so other languages are outside of our scope.

For instance, the expected generated code for example model for QSM depicted
in Chapter 4 if the target language is Java is listed in Appendix B.1.

All templates for java can be found at:

http://code.google.com/p/umple/source/browse/#svn%2Ftrunk%2FUmpleTo]Java%

2Ftemplates
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There are about 42 code-generation test cases that are written to ensure that

code generations from QSM and PSM are as we expect. They can be found at:

http://code.google.com/p/umple/source/browse/#svn%2Ftrunk%2Fcruise.umple%?2

Ftest%2Fcruise%2Fumple%2Fstatemachine%2Fimplementation%2Fjava

5.7.4 Language-Oriented Semantic or Testbed Testing

This is the final step of the Umple testing process; called the testbed testing or
semantic testing. This level is performed by doing more extensive tests to ensure that
the compiled code behaves properly and to verify its semantics (Badreddin, 2010). In
other words, these tests verify that the generated code can compile under the language
compiler and execute properly. The reason for making these tests is to ensure the
generated code works properly. In order to add this level of testing, Umple currently
provides sample applications for each base languages supported by Umple, by creating
an independent testing project for each language referred in Umple as a ‘testbed’ to

validate the semantics of systems built using Umple.

To do semantic testing of pooled and queued state machines, we add small
programs to the source folder of the testbed project in Java that implement the new

features: ‘queued’ and ‘pooled.'

We create Umple files called ‘TestHarnessQueuedStateMachine.ump’and
‘TestHarnessPooledStateMachine.ump’ that contain multiple tests for queued and pooled

state machines.

The Umple example seen in Listing 5.2 demonstrates a simple generated system
test of a queued state machine. This system is fed as an input to Umple, and the test is

performed on the generated system.

After compiling this Umple program, we get the generated code in Java

illustrated in Appendix B.1.

Then we add the JUnit tests to test the behavior in
‘QueuedStateMachineTest.java’ in the test folder ‘cruise.queued.statemachine.test.' It

shows that our program, after compilation, behaves properly as we expect.
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The testing of the above example can be performed by feeding the system with a
number of events that are added to a queue, and then they are taken off the queue one

by one and processed to transition to the expected states.

For example, the above system can be fed the following events:

el
e2
e2
el

This sequence of events is tested by the test written in JUnit4 syntax listed in
Appendix D.1.. The ‘@ test’ means that we conducted two tests: one to check that the
number of messages values in ‘MessageType” is equivalent to the number of events of
the state machine, and the other test to check that the process of the events is done as

we expect.

In the semantic tests of queued state machines, we have different aspects of
generated Java code that need to be checked to ensure that the machine behaves
properly.

First, we check that the number of messages in the message types is equal to the
number of events in the state machine without duplication and without counting the
auto-transition and ‘unspecified’ events. Also, we test the processing of the events to
make sure that each event is processed as it is taken off the queue, the events are

processed in FIFO order, and also to check that there are no events left in the queue.

[f the tests pass, we obtain more confidence that the generated system behaves
as expected. But if it fails, then we have to investigate the cause of failure and resolve it
following the steps used to detect and resolve any defect that may be uncovered in the

Umple compiler as described in Forward (2010).

We also add some semantic tests for the behavior of systems that have pooled

state machines. An example of one of these semantic tests is shown in Appendix D.2.

In the semantic tests for pooled state machines, we also test different aspects of
generated Java code which helps us make sure that our code behaves in the correct way

semantically. First, we check that the size of messages in message types is equal to the
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number of events in the state machine without duplication and without counting the
auto-transition (as in the case of queued state machines, except that we could have
‘null_M’ message types if one or more states or substates do not have any event). In
addition, we compare the number of states or substates to the number of keys in the
stateMessageMap. We also check that every state of the state machine is put in the
stateMessageMap. Moreover, we check that every state and substate in the state
machine has its own set of messages. Also, we test the processing of the events to make
sure that each event is processed as it is taken off the queue, and the events are
processed in the correct order. We also test the case where there is unspecified
reception by checking that the event is saved in the pool until it becomes ready to be
taken and consumed. We also check the number of events that are left in the pool by the
end of the process.

There are about 32 semantic tests that can be found at:

http://code.google.com/p/umple/source/browse/#svn%2Ftrunk%2Ftestbed%2Ftest

%2Fcruise%2Fqueued%?2Fstatemachine%2Ftest

http://code.google.com/p/umple/source/browse/#svn%2Ftrunk%2Ftestbed%2Ftest

%2Fcruise%?2Fpooled%2Fstatemachine%2Ftest

5.8 Various Issues Related to Java Code Generation of Simple and Composite

QSM and PSM

There are number of different design issues related to queued and pooled state
machines’ generated code in Java. We study and investigate the various alternatives to
resolve them and then we make a decision to select the best one among them according

to some criteria we have established to compare between them.

In the following subsections, we discuss a list of design issues, discuss the
possible solutions of these issues depending on some criteria, and finally explain the

reasons for choosing a specific solution.

5.8.1 Queued or Pooled State Machine’s Events with Arguments

A state machine’s event can have parameters with any valid data types. The
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generated code from the event of state machine should have these parameters. In fact,

the values of the parameters can be used in guard conditions and/or transition actions.

The semantics of event arguments was specified and implemented in Umple
state machine events. However, we noticed that Umple originally did not parse the
arguments to events correctly which led to ‘bad’ code being allowed to be passed
through as event parameters. Therefore, we needed to make Umple parse type and
name of the parameter, with multiple parameters separated by commas. This semantics

is allowed for basic, queued, and pooled state machines.

In the case of a QSM, we need to be able to parse an event's parameters, so they
can be added to the vector in a message method where the event is added to the queue.
Thus, QSM can work with events with no parameters as well as events with parameters.

For instance, we have the following Umple code for the QSM:

1 class X

2 {

3 queued sm{

4 sl |

5 el (String name) -> s2;
6 }

7 s2

8 {

9 e2 (Integer id, String name) -> sl;
10 }

11 }

12 }

Listing 5.7: Example of the queued state machine events with parameters
The piece of Java generated code for the above Umple code related to message

methods shows the event el has one parameter called name, and the other event e2 has

two parameters: one Integer called id, and the other is string called name.

1 [ === =======

2 //messages accepted

3 [ =m=mmmmmmmmm=mmme=s=ss=s=s=s===

4 public void el (String name {

5 Vector v = new Vector (l);

6 v.add (0, name);

7 queue.put (new Message (MessType.el M, Vv));
8 }

9

10 public void e2(Integer id, String name) {

11 Vector v = new Vector (2);

12 v.add (0, id);

13 v.add (1, name);

14 queue.put (new Message (MessType.el M, v));
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If the events arguments are written in bad formatting, then a warning message
should be raised to indicate that there is a mistake in state machine syntax, and it could
not be processed and then the state machine will be considered as extra code that

means it will not be generated. For example, if an event argument is declared as

following:
1 class X{
2 sm{
3 sl {
4 e (S tring name) -> s2; <4‘ Warning message because this ?rgument is written in bad
5 } formatting
6 52
7 {
8 el (Integer id) -> sl;
9 }
10 }
11 }

The warning message will indicate that there is a mistake in line 4.
Also, an error message should be raised when an event parameter is

inconsistent with the previous declaration of the same event.

1 class X{

2 sm {

3 sl {

4 e (String name) -> s2;
5 }

6 s2

7 {

8 e (Integer id) -> sl;
9 }

10 }

11 }

The error message will indicate that there is an error in line 9.
To do changes on event arguments, we went through the following steps:

1. Adding a new 1->* association in the Umple metamodel from Event class to

MethodParameter class representing the set of parameters called '‘params.’

In ‘StateMachine.ump’, we wrote the following code:

1 // The event parameters.
2 1 -> 0..* MethodParameter params;

2. Modifying the State Machine grammar and passing code to parse method

parameters more precisely; instead of populating the 'args' attribute as a String,
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which was the original semantics, populating links of the new association. In

‘umple_state_machines.grammar’, we changed it to the following:

1
2

3. Getting rid of the 'args' attribute, and adding manually a method 'getArgs' that

will return the same string as it did before (by scanning the params), so we do
not need to change the code elsewhere in the system that existed before, such as

in the diagram generator, etc.
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Also, we change UmplelnternalParser_CodeStateMachine.ump to allow for
parsing the tokens of event parameters. And adding a parser test case
(100_eventWithArgument.ump) to test if Umple parsing tokens correctly and another

test case to raise an error message with inconsistent event arguments:
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Listing 5.8: ' eventWithArgument.ump’ Umple test
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Listing 5.9: Parser test for generating tokens
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Listing 5.10: Parser test

Since Jet files related to state machine events have been already changed to
enable having parameters for state machine’s events, we still need to change Jet files

related to QSM and PSM events to do the required change which are:

* queued_state_machine_inner_class.jet
* queued_state_machine_queuedEvent.jet

* queued_state_machine_removalThread_run.jet

Also, we add a set of test cases to check that actual generated code matches

expected generated code. In StateMachineTest.java, a set of test cases is:

* eventWithArguments.ump

* twoEventsWithArguments.ump
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In StateMachineTest.java, set of QSM events’ parameters test cases are:

* queuedStateMachine_withParameters.ump

* queuedStateMachine_withParameters_1.ump
In StateMachineTest.java, a QSM events’ parameters test case is:

* pooledStateMachine_withParameters.ump

5.8.2 Timed Transitions in QSM and PSM

In subsection 4.6.1, we give an explanation of the semantics of a timed transition
specified in Umple state machine whether it is basic, queued, or pooled. We also
identify two problems of specifying the timed transition in a nested state machine and

in a pooled state machine.

The first problem, as mentioned in Chapter 4, arises because improper
generation of Java code from the nested state machine that have timed transitions

specified in its substates.

First, we do the required changes on the following Jet files; so that, the timer
mechanism is generated properly in Java, and the generated code from the state

machine is compiled and runs.

-  members_AllHelpers.jet: to generate helper variables if a state machine has
nested states.

- state_machine_Event_StartStopTimer_NestedStates.jet: to allow for generating
start and stop methods for timers for the case of nested state machines.

- state_machine_timedEvent_Alljet: this is a generic file that calls the other jet files
related to the timer.

- state_machine_timedEvent_Handler.jet: This is generic jet file that calls the jet
files related to the run method of the timer thread.

- state_machine_timedEvent_run_NestedStates.jet: to generate the run method of
the timer thread for the case of a nested state machine.

- Generator_CodeJava.ump: to generate a library “java.util.*” for the state machine

if it is not queued or pooled.
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Second, we write a set of test cases in the ‘StateMachineTest.java’ file for
generated Java code to make sure that the actual generated code matches syntactically

the expected code.

The second problem is that in case of PSM, if any event is saved in the pool
because it is an unspecified event, and the timed transition is triggered after a specific
delay leading the machine to the target state where the event would be consumed, then
this event would not be removed from the pool, and they would not be processed. In
other words, the event-processor thread does not work properly to get the saved event

from the pool when there is a transition to consume it.

We proposed three different solutions to solve this problem, and we choose the
third solution as the best alternative to fix this problem. Therefore, we make some

changes on the generated Java code to apply this solution.

Details about how we make these changes and the parts that were affected by
these changes are as follows. In the case of queued and pooled state machines, we
created a message in the ‘MessageType' enumeration with name of a timed event
followed with ‘_M." In the case of pooled state machine, we added this message to the
set of the states that have the timed transitions. In the case of queued and pooled state
machines, we added the '_' underscore symbol before the name of the timed events
methods. Once the state machine is in the state that has the timed transition, the timer
starts and the timer thread wakes up, and it injects the timed event into the
queue/pool. When the timed event is taken off the queue/pool to be processed. The
timer stops after a specific delay or when the message is inserted and then transitions
to the next state. If the state that has the timed transition contains other events, and one

of the events is called, the timer is cancelled, and a timed event is not processed.

This requires the following changes on Jet files to generate Java code in a proper

way:

1. Member of state machine jet file: we add a timed event message to the list
(queue/pool state machine).

2. Event of state machine jet file: we add '"_' symbol before the timed event name.
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3. Event of Queued/Pooled state machine jet file: we add a method to inject the
event in the queue/pool.

4. We call this method in the run() of timer class.

5. We add code to the event-processor thread to allow for taking timed event

message off the queue/pool.

Then, we created four test cases in the ‘StateMachineTest.java’ directory to

ensure that the Java code is generated correctly.

5.8.3 Single Event Causing Multiple Transitions in Nested or Concurrent States of Queued
or Pooled State Machines

If a QSM or PSM has an event that is defined in one or more nested or concurrent
states, then in generated Java code, this event would not be duplicated in the

enumerations of the message types, public message accepting methods, or run method.

5.8.4 Single Event Causing Multiple Transitions in Multiple Queued or Pooled State
Machines in the Same Class
Figure 5.6 shows state diagrams for two queued state machines defined in one

class. The event el is defined in both state machines.

1 class X{ 1 class X{

2 queued sm{ 2 pooled sm{

3 sl { 3 sl {

4 el ->s2; 4 el ->s2;

5 e5 —>s2;} 5 e5 ->s2;}

6 s2 | 6 s2 |

7 e2 ->s3;} 7 e2 ->s3;}

8 s3 { 8 s3 {

9 e3 ->s4;} 9 e3 ->s4;}
10 sd4 { 10 sd4 {

11 ed ->s1;} 11 ed ->s1;}
12 } 12 }

13 queued/pooled sm2| 13 queued/pooled sm2
14 | { 14 | {

15 s21 { 15 s21 {

16 el -> s22;} 16 el -> s22;}
17 s22 { 17 s22 {

18 @7 => s2lg] 18 @7 => s2lg]
19 } 19 }

Figure 5.6: State diagrams show that the same events are defined in multiple queued/pooled

state machines as shown in UmpleOnline

As shown in Figure 5.6, when event el is called, it will take the system into state

s2 in the first state machine and state s22 in the second state machine.
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In UML, when the same event causes multiple transitions to be fired from the
same state, the guards should be mutually exclusive. That is to say; multiple transitions
from the same target state can have the same event trigger, if and only if the guard
conditions on these transitions do not overlap. At the time the event occurs, a guard

condition will be evaluated just once for the transition.

This semantic is the same for the basic, queued, and pooled state machines in

Umple when the same events triggers transitions in the same state of the machine.

Also, in UML, multiple transitions can be triggered within one UML state
machine if it has orthogonal regions. The firing order of these transitions is not

determined by the UML standards.

The semantic of the basic version of Umple state machine enables defining the
same event in two state machines defined in the same class. In the example above in
Figure 5.6, the event ‘el’ is defined in machine ‘sm’ and ‘sm?2’. These two machines are
considered to be a single machine with two orthogonal regions ‘sm’ and ‘sm2’.
Therefore, if the event occurs and both machines are in the target states, the event will
be processed concurrently on both machines, leading each machine to transition to the
destination states. However, if only one machine is in the target state and the event
occurs, the event will be processed only on the machine that is in the current state, and
it will not be processed on the other machine. This also is the same semantic for queued

and pooled state machines.

If we have this case, then the event that is specified in one or more queued or
pooled state machines, or in one or more substates should not be duplicated in the
enumerations of message types, in the message-accepting methods, or in the run

method.

For example, the Java code generated from the above Umple code will have an

enumeration of the messages types for both state machines as follows:

enum MessageType { el M, e2 M, e3_M, e4 M, e5 M, e7_M }
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5.8.5 Multiple Queued State Machines (QSMs) or Multiple Pooled State Machines (PSMs)
in the Same Class
Figure 5.7 shows a state diagram for two queued/pooled state machines defined

in one class; one of the queued/pooled state machines has nested states (substates).

class X{
queued/pooled sm{
s1{
sla{
el -> slb;
}
s1b{
e5 -> s2;
}

sm X sm

sm X sm1l
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10 }

11 s2{

12 e2 ->sl;
13 }

14 }

15 queued/pooled sml{
16 s3{

17 e3 -> s4;
18 }

19 s4{

20 ed -> s3;
21 }

22 }

23 }

Figure 5.7: A state diagram for multiple queued state machines in one class as
shown in UmpleOnline

The multiple QSMs or PSMs in one class are equivalent to a single QSM or PSM
state machine with concurrent regions. We have one queue/pool in which incoming
messages are added. Then, these messages are removed form the queue/pool and

processed.

In order to have generated Java code of Umple code with a class that has two or

more queued/pooled state machines, we have two design decisions.
The first design choice is summarized in the following points:

1. Creating an enumeration of message types for each QSM/PSM such as:
MessageType and MessageType 1, .. etc.

2. Declaring and initializing a MessageQueue/MessagePool instance for each

queued/pooled state machine such as:

queue and queue_1, .. etc.
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pool and pool 1, .. etc.
Defining an overloaded constructor in Message class for each queued/pooled
machine where its parameters are MessageType_1 t and Vector p and so on.
Events methods of the second queued/pooled state machine to add incoming
messages to the queue/pool have been defined as:

public void event ()

{ queue_1.put(new Message(MessageType l.event M, null)); }

public void event ()

{ pool 1l.put(new Message(MessageType l.event M, null)); }

In the run() method the content of a while loop looks different.
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public void run ()
{
boolean status=false;
while (true)
{
Message m = queue/pool.getNext () ;
switch (m.type)
{
//cases of first queued/pooled SM's MessageType variables
}
Message m_1 = queue/pool 1.getNext();
switch (m_1.type 1)
{
//cases of second queued/pooled SM's MessageType variables
}
if (!status)
{
// Error message is written or exception is raised
}
}

}

This design has some issues. There is a single run method for the class, and it

retrieves messages from both state machines in a fixed order. However, we do not
know in which order messages may arrive for the two state machines. Each state
machine needs its own thread fetching the messages. The second issue is that not all
messages come from the environment of the class. One should also consider that one of
the state machines generates an output that goes to the other state machine. The third
issue is that there could be potentially 100 state machines in a complex system with
lots of nesting and concurrency. The problem might occur because of generating these

state machines with many arguments that cannot be handled by this design.

However, it is clearly the case that 'several state machines within one class' is
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exactly equivalent to a single state machine with concurrent hierarchical states at the
top level, each realizing one of the simple state machines. That has been the Umple

semantics all along. The single hierarchical state machine would only need one queue.

Therefore we adopt this second design choice and resolve the above issues by

making the following changes to our generated code:

Avoiding starting multiple 'removal’ threads.

Only declaring one message queue/pool for all state machines

Having one enumeration of message types for all events of all state machines.
Having message type lists for the top-level states, and for the bottom level.

In the inner class, only declaring type for all state machines.

In the messages accepted section, everything gets put on a single queue/pool.
In the run method, there would be just one switch statement not more that one.

Avoiding duplicated methods such as run and the event handling methods.
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Avoiding duplicate inner classes.

10. Generating messages-accepting methods for all events of all state machines.

11. Having "_" prefix for all SMs' event methods.

12. Avoiding duplication of the constructor body.
13. Avoiding duplication of "implements runnable."

14. Declaring a static Map<Object, MessageType> stateMessageMap and initializing

it statically. In the Map, we put pairs mapping every possible state Enum value in

every possible state machine to the relevant list of messages.

15. Simplifying ‘getNextProcessableMessage’ with one ‘if’ statement per machine.

5.8.6 One or More (QSMs) with One or More Basic and/or (PSMs) in the Same Class
We decided that it should not be allowed to have more than one type of state

machine in one class except for the eventless state machine because each type of state

machine has different semantics. A queued state machine has a different semantic from

a pooled state machine and basic state machine in Umple. It is not possible to have one
queue for all types of state machines when they are defined in the same class for

several reasons. First, the basic state machine does not have an event-queue handler
mechanism. Second, the queued and pooled state machines have different strategies to
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handle and remove the events from the queue.

Listing 5.11 below presents a class with three types of state machines: queued
state machine (sm), pooled state machine (sm1), and basic state machine (sm2). The
result of defining two or more types machines in one class is to generate an error

notification indicating there is a mistake that needs to be fixed.

1 class X{

2 queued sm{

3 sl{

4 el -> sl;}
5 }

6 pooled sml{

7 s3{

8 e3 -> s4;}
9 s4{

10 ed -> s3;}
11 }

12 sm2 |

13 s5 {

14 e5 -> s5;
15 }

16 }

17 }

Listing 5.11: Example of defining basic, queued, and pooled state machines in one class

For example, the error that is raised from compiling the above Umple code is:
Error on line 20: class X must have no queued state machine,
pooled state machine, and regular state machine in the same

class. More information (58)

5.8.7 QSM or PSM with at Least One State But with No Events (Raising a Warning
Message)

If we have a queued or pooled state machine defined in Umple that has a set of
states, but does not have any regular events or timed events, then a warning message
will be raised to indicate to the user that there is no event to be queued/pooled as

following:

Warning on line 2: Queued/Pooled State machine (name of the
sate machine) has no events to be queued/pooled. More

information (56)

123



5.8.8 One or More Eventless State Machines with One or More QSMs or One or More
PSMs in the Same Class

The eventless state machine is a construct in Umple that has states, but has no
events to cause change of states. The eventless state machine can be used to generate a
simple 'enum’ in any language (enumerated type). It also can be used in the early
stages of setting up a state machine (a programmer can call 'set' methods to set a state

manually), before one has decided on the events yet.

If the eventless state machine is defined with a basic, queued, or pooled state
machine within one class, then the eventless state machine can be ignored because it is
not really a state machine. It is just an enumeration type. Therefore, the Java code

would be generated normally, and no error or warning notifications will be raised.

If the eventless state machine is defined with both QSM and PSM in one class,
then an error will be raised because it is not possible to have both QSM and PSM in the

same class.
Figure 5.8 shows state diagrams for three state machines; sm, sm1, and sm2.

The third state diagram shown in Figure 5.8 (sm2) has two states but no events.

1 class X {
sm X sm2 2 queued sm {
sm X sm1 3 s1{
Q‘ @ 4 sla{ el -> slb; }
5) slb{ e5 -> s2; }
6 }
7 s2{ e2 -> sl; }
8 }
9 queued sml {
10 s3{ e3 -> s4; }
11 s4{ e4 -> s3; }
12 }
13 sm2 {
14 a {}
15 s {1}
16 }
17 }

Figure 5.8: State diagrams for two queued state machines (sm and sm1) and one eventless
state machine (sm2) as shown in UmpleOnline

The state machine (sm2) is an eventless one because it has states but it does not
have any events. Therefore, it is allowed to define this kind of the state machine with
queued state machines in one class. The user can define the eventless state machine

before or after the declaration and definition of the queued or pooled state machine(s).
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5.9 Unspecified Reception Handler Mechanism in Umple

A special event called ‘unspecified’ is specified in any state where the user wants
to detect unspecified receptions when events arrive, and the current state does not
respond to them. This special transition can be placed in any state, or in any substate at
any level of nesting. It has an event with string arguments: state and event. The event of
this transition ‘unspecified’ is generated automatically from a state machine as a special
method that is called and handled at the end of every event method, in the ‘default’
section of the switch statement. When unspecified reception is encountered in the state,
this will match any event not handled. If the event method is called and the current
state does not respond to it, then this special event method ‘unspecified’ is called

instead.

The semantics of this special transition is the same as any other transition in a
state machine, which means that it could perform any kind of actions; it could

transition to some other states, and it can be guarded.

The Umple code for the state machine SM shown in Figure 4.8 is as following:

1 class X{
2 sM {
3 sl {
4 a -> s2;
5 unspecified -> sl;
6 }
7 s2 {
8 b -> s3;
9 }
10 s3 {
11 c -> sl;
12 unspecified -> s3;
13 }
14 }
15 public static void main (String[] args) {

X x=new X();
16
17 x.a();

x.b();
18 x.c();
19 2@ ) 9

-c();

20 x.a();
21 x.b();
22 }
23 }

The generated code of ‘unspecified’ transition of the state machine in Figure 4.8
is shown below. The ‘unspecified’ event method will be called at the end of the event

methods (a) and (c). Specifically, it is put in the default section, and it will not be called
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at the end of the event method (b) because the user does not want to handle the

unspecified reception for this event.

A set of test cases to test the implementation of using ‘unspecified’ transition for
handling unspecified receptions in case of basic and queued state machines are shown

in Table 5.3.

Table 5.3: Different test cases of unspecified reception handler mechanism for the basic and queued
state machines

Basic state Machine Queued state Machine
Class with a simple state machine Class with a queued state machine with
where at least one state has simple states where at least one state
‘unspecified’ event has ‘unspecified’ event
Class with a composite (nested or Class with a queued state machine with
concurrent) state machine where at composite (nested or concurrent)

least one state has ‘unspecified’ event states where at least one state has
‘unspecified’ event

Two classes where each class has a Two classes where each class has a
basic state machine communicating queued state machine communicating
with each other. Each of them has with each other. Each of them has
simple states where at least on of them | simple states where at least on of them
has ‘unspecified’ event. has ‘unspecified’ event.

Two classes where each class has a Two classes where each class has a
composite (nested or concurrent) state | queued state machine with composite
machine communicating with each (nested or concurrent) states

other. Each of them has states where at | communicating with each other. Each
least on of them has ‘unspecified’ event. | of them has states where at least on of
them has ‘unspecified’ event.

Class has multiple basic state machines | Class has multiple queued state

either simple or composite where at machines either simple or composite
least one state in each state machine where at least one state in each state
has ‘unspecified’ event. machine has ‘unspecified’ event.

Because the ‘unspecified’ is a special transition of Umple state machine and
‘unspecified’ is a keyword, when the ‘unspecified’ event method is called by another
event handling method, it would not be added to the queue in case of QSM. All other
regular events will be added to the queue when they are created. To clarify, when
processing the first event at the head of queue, if it would not be handled then the
unspecified logic takes place, and the ‘unspecified’ event method is called to handle the
problem immediately.
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The parts of generated code that show how the unspecified reception handler is

called in the event ‘a’ for a basic and queued state machine is in Table 5.4.

Table 5.4: 'unspecified' event method is called in 'default' section of event handling methods

Event Basic state Machine Queued State Machine
a public boolean a() public boolean _a()
{ {
boolean wasEventProcessed boolean wasEventProcessed =
= false; false;
SM aSM = sM; SM aSM = sM;
switch (aSM) switch (aSM)
{ {
case sl: case sl:
setSM(SM.s2); setSM(SM.s2);
wasEventProcessed = wasEventProcessed =
true; true;
break; break;
default: default:
// Other states do // Other states do
respond to this event respond to this event
wasEventProcessed = wasEventProcessed =
unspecified(getSM().toStrin | unspecified(getSM().toString(
g(), "a"); ), "a");
} }
return wasEventProcessed; return wasEventProcessed;
} b

The pseudocode of the generated Java code for the unspecified reception

mechanism used in this example is shown in Appendix E.1.

If we use the same example in Figure 4.8 to define PSM and show the effect of
using the ‘unspecified’ transition, we notice that this mechanism has no effect on the
PSM. As a result, the ‘unspecified’ events defined in this example are not longer treated
as special events, and they are generated as any regular event defined in this example.
The reason behind this is because that the pooled state machine is enhanced for two
purposes: first is to allow the state machine events to be pooled, and second is to define
policy of handling events that avoid unspecified receptions. If ‘unspecified’ event is
specified, a warning message would be raised. The warning message indicates the
number of the line where ‘unspecified’ event is specified and the message states that:
"(unspecified) must not be used in combination with Pooled
State machine ‘name of the state machine' - it is treated such

as other regular events - it is pooled. More information
(62)."
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5.9.1 Test-Driven Development (TDD) For Adopting the Unspecified Reception Handler
Mechanism in Umple
The main changes to be done to allow for unspecified reception handling

mechanism can be shown at:

http://code.google.com/p/umple/source/detail?r=3571

The following subsections show the different levels of testing we went through

which shows that we use the TDD approach for developing this mechanism in Umple.

5.9.1.1 Modifying Umple State Machine Grammar to Have ‘unspecified’ Keyword as a
Special Event in a State Machine (Parser Testing)

The Umple state machine grammar was first changed to allow for the
‘unspecified’ keyword. The basic and queued state machines can now have this special

event to detect the problem of unspecified reception.

1 transition : ( [[eventDefinition]] [[guard]] | [[guard]]

2 [[eventDefinition]] | [=unspecified]? [[guard]]

3 [[eventDefinition]])? ( [[action]] -> | =-> [[action]] | -> )
4 [stateName] ;

We add a test case called ‘100_stateMachine_UnspecifiedReception.ump  to the
test suite to check if we can now specify ‘unspecified’ event in the Umple basic and

queued state machines.

1 class UnSpecifiedReceptionTestCaseOne {
2 sm |

3 sl {

4 el -> s2;

5 unspecified /{printError();}-> errorl;
6 }

7 s2 |

8 e2 -> sl;

9 unspecified -> error2;

10 }

11 errorl {

12 -> sl;

13 }

14

15 error2 {

16 -> s2;

17 }

18 }

19 }

Listing 5.12: Umple code for parser test
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5.9.1.2 Modifying Umple State Machine Semantics to Recognize ‘unspecified’ Keyword
(Metamodel Testing)
We adapt the Umple metamodel to allow for ‘unspecified’ keyword by changing

‘StateMachine.ump’ to add the following piece of code to Event class.

=

Boolean unspecified = false;

We also Modify ‘UmplelnternalParser_CodeStateMachine.ump’ to allow for
parsing the keyword ‘unspecified’ by adding the following piece of code to the methods

of analyzing the state machine’s transitions and stand-alone transitions:

if (event.getName () .equals ("unspecified"))

{

event.setUnspecified (true) ;
1

S WwWwbhRr

We then add a test case to the test suite ‘UmpleParserStateMachineTest.java' to
show that the Umple metamodel is populated correctly for ‘unspecified’ event of a state

machine.

5.9.1.3 Modifying Jet Templates to Generate Java Code From Unspecified Reception
Handler Mechanism (Template or Code Generation Testing)

In the generated Java code, each state that has the ‘unspecified’ event, should call
the ‘unspecified’ event method at the end of its events methods in the default section.
The ‘unspecified’ event method in the generated code would have the state and event
arguments as strings, and because these arguments would always be the same
wherever the ‘unspecified' event method is called, and then the arguments would not
be derived from arguments in the Umple code. The result of calling the ‘unspecified’

event method in all cases would be assigned to the ‘wasEventProcessed’ variable.

We make a change on a set of et files to enable Umple to generate Java code for
a state machine that has ‘unspecified’ events. Below, we list the Jet files that are affected

by these changes.

- queued_state_machine_queuedEvent.jet
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- queued_state_machine_removalThread_run.jet
- state_machine_Event.jet

Also, we modify ‘Generator_CodeJava.ump' to deal with some issues related to
an unspecified event. In addition, a bunch of test cases is added to ensure that Java
generated code is syntactically correct which means that the actual generated code

matches the expected generated code.

We then write a list of test cases that covers the basic and queued state

machines and the case of nested state machines where ‘unspecified’ event is specified.

5.9.1.4 Adding Semantic Tests For Java Code Generation of Unspecified Reception
Handler Mechanism (Semantic Testing)

Finally, we add some semantic tests to ensure that generated programs behave
as expected, which means that they are semantically correct. For example, we have a
generated system model illustrated in Listing 5.13. We use the queued state machine to
model this system, and we use ‘unspecified' events to handle the unspecified reception
problem when it occurs at a specific state (idle) and substate (validating). Therefore,
when the state machine is in idle state, and the event is called that does not match one
of the events that state has, the ‘unspecified’ event will be called, and the state machine
will transition to state (errorl) which has instantaneous transition to move to (idle)
state. In addition, a substate (validating) has an ‘unspecified' event that will be called if

an event is called and does not match ‘validated' event.

1 class AutomatedTellerMachine
2 {

S String[] logs;

4

5 queued sm

6 {

7 idle

8 {

9 cardInserted -> active;
10 maintain -> maintenance;
11 unspecified -> errorl;
12 }

13 maintenance

14 {

15 isMaintained -> idle;
16 }
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Listing 5.13: Umple example used as semantic test

The following events are considered as inputs to feed the above system:
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[f we trace the execution of this system, we will figure out that there are four

events that are considered to be unspecified reception.

When the event ‘cardInserted’ is called, the state machine transitions to ‘active’
state, and when the event ‘validate' is called, it will transition to ‘selecting’ state. Then
the event ‘select’ is triggered which causes the transition to move to the ‘processing'
state. The event ‘finish' is called which enable the state machine to transition to
‘printing’ state. The event ‘receiptPrinted’ is then called causing the state machine to
move to the ‘idle' state. After that, the event ‘selectAnotherTransition' is called, which is
considered as unspecified reception in the current state ‘idle.' It will be removed from
the queue, and then it will not be processed and the unspecified reception method is
called which handles this error by transitioning to ‘errorl’ state that in turn allows the
state machine to transition to ‘idle’ state. The semantic test that can make a
comprehensive test of the processing of the events showing unspecified reception

mechanism in QSM is written in Appendix D.3.
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Chapter 6 Test Cases and a Real-Time Case Study

6.1 Test Cases For Different Features and Issues of Queued and Pooled State

Machines

Tables 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8 below illustrate the main queuing
and pooling features that are supported in Umple for different flavors of state machines
with given links.

As shown in Table 6.1, a simple state machine that has a set of simple states can
now be defined as a queued or pooled state machine. This type of a state machine can
have any number of events or timed events to be added to the queue/pool when they
are triggered. Then they are taken off the queue/pool and processed when the machine
is in current corresponding state.

In addition, Umple supports composite state machines that are developed by
Badreddin (2010) to have nested and/or concurrent states as shown in Table 6.1.
Currently, it is possible to have queued and pooled nested and/or concurrent state
machines as shown in Table 6.1, Table 6.2 and Table 6.3.

Besides, Table 6.4 has a set of test cases to check the case when multiple QSMs
or PSMS are defined in the same class, and when multiple QSMs and PSMs are defined
in the same class.

Table 6.5 has a set of test cases to check queued and pooled state machine’s
elements: transitions, actions, entry/exit actions, and guards. There are also test cases
to check when events have parameters and when they have no parameters.
Furthermore, tests cases are written to show the use of unspecified mechanism for QSM
and the potential outputs.

We also define a list of test cases in Table 6.6 to check the different types of
transitions in case of QSM and PSM such as state transitions, instantaneous transitions,
and timed transitions.

In addition, we write a set of test cases for various issues that are covered during
this thesis (Chapter 5) such as eventless state machine with QSM or PSM as shown in

Table 6.7 (refer to section 5.8.8 for more information about eventless state machines),
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QSM and Basic SM in the same class (Table 6.8), PSM and Basic SM in the same class

(Table 6.8), two or more QSMs/PSMs communicate with each other in the same

class/in different classes (Table 6.8), and QSM or PSM with states that do not have

events (Table 6.8).

6.1.1 Tests For Different Types of Umple State Machines

Table 6.1: Umple test cases for both flavors of Umple state machines

Types of State Machine

* Basic (Simple) State Machine |

OSM | http://code.google.com/p/ump | PSM | http://code.google.com/p/umple
le/source/browse/trunk/cruis /source/browse/trunk/cruise.um
e.umple/test/cruise/umple/sta ple/test/cruise/umple/statemach
temachine/implementation/qu ine/implementation/pooledState
euedStateMachine.ump Machine.ump

* Composite State Machine

- Nested State Machines

OSM | http://code.google.com/p/ump | PSM | http://code.google.com/p/umple
le/source/browse/trunk/cruis /source/browse/trunk/cruise.um
e.umple/test/cruise/umple/sta ple/test/cruise/umple/statemach
temachine/implementation/qu ine/implementation/testPooledwi
euedWithNestedStateMachines thNestedStates.ump
ump

- Concurrent State Machines

OSM | http://code.google.com/p/ump | PSM | http://code.google.com/p/umple
le/source/browse/trunk/cruis /source/browse/trunk/cruise.um
e.umple/test/cruise/umple/sta ple/test/cruise/umple/statemach
temachine/implementation/qu ine/implementation/pooledState
euedWithConcurrentStateMach MachineWithConcurrentStates_au
ines.ump toTransition.ump
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6.1.2 Nested State Machines

Table 6.2: Umple test cases for QSM and PSM in case of nested state machines

Nested State Machine Cases

Case 1: | Nested States with transitions

Case 2: | Nested States with auto-transitions

Case 3: | Nested States with timed transitions

Case 4: Nested States with entry/exit actions

Case 5: | Nested States with transition actions

Case 6: Nested States with guards

Case 7: | Nested States with do activities

Case 8: | Same events’ names in one or more Nested States

QSM | http://code.google.com/p/umpl | PSM | http://code.google.com/p/umple

e/source/browse/trunk/cruise.
umple/test/cruise/umple/state
machine/implementation/queu
edWithNestingStatesATM.ump

/source/browse/trunk/cruise.um

ple/test/cruise/umple/statemach

ine/implementation/testPooledw
ithNestedStates_4.ump

6.1.3 Concurrent States

Table 6.3: Umple test cases for QSM and PSM in case of concurrent states

Concurrent State Machine Cases

Case 1: | Concurrent Substates with transitions

Case 2: | Concurrent Substates with auto-transitions

Case 3: | Concurrent Substates with timed transitions

Case 4: Concurrent Substates with entry/exit actions

Case 5: | Concurrent Substates with transition actions

Case 6:  Concurrent Substates with guards

Case 7: | Concurrent Substates with do activities

Case 8: | Same events’ names in one or more Concurrent Substates

QSM | http://code.google.com/p/umple | PSM | http://code.google.com/p/umpl

/source/browse/trunk/cruise.u
mple/test/cruise/umple/statema
chine/implementation/queuedW
ithConcurrensStatesCourseAttem

pt.ump

e/source/browse/trunk/cruise.
umple/test/cruise/umple/state
machine/implementation/poole
dStateMachineWithConcurrentS
tates_autoTransition.ump
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6.1.4 Tests For Multiple State Machines in the Same Class

Table 6.

4: Umple test cases for case of multiple queued /pooled state machines in the same class

Cases

of Multiple State Machines in The Same Class

Case 1:
Case 2:

Multiple QSMs in the same class
Same events’ names in one or more QSMs

QSM

http://code.google.com/p/umple/ | http://code.google.com/p/umple/so

source/browse/trunk/cruise.umpl

urce/browse/trunk/cruise.umple/tes

t/cruise/umple/statemachine/imple
mentation/multipleQSM_sameEvents.

e/test/cruise/umple/statemachin
e/implementation/multipleQSM.u

mp ump
Case 3:  Multiple PSMs in the same class
Case 4:  Same events’ names in one or more PSMs
PSM | http://code.google.com/p/umple/ | http://code.google.com/p/umple/so

source/browse/trunk/cruise.umpl

urce/browse/trunk/cruise.umple/tes

t/cruise/umple/statemachine/imple
mentation/multiplePooledStateMachi

e/test/cruise/umple/statemachin
e/implementation/multiplePooled

StateMachine.ump nes sameEvents.ump

Case 5:

One or more QSMs and one or more PSMs in the same class.
(Error Message is generated)

http://code.google.com/p/umple/sourc

http://code.google.com/p/umple/sour

e/browse/trunk/cruise.umple/test/cru

ce/browse/trunk/cruise.umple/test/c

ise/umple/compiler/106_invalidQSMan

ruise/umple/compiler/106_invalidQS

dPooledSMinSameClass.ump

MandPooledSMinSameClass.ump
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6.1.5 Umple State Machine’s Elements

Table 6.5: Umple test cases for different elements of Umple state machine

Elements of State Machine

* Transition, Action, Entry/Exit Action, Guard

OSM | http://code.google.com/p/umpl | PSM | http://code.google.com/p/umpl
e/source/browse/trunk/testbed e/source/browse/trunk/testbed
/src/TestHarnessQueuedStateM /src/TestHarnessPooledStateMa
achine.ump chine.ump

e Event:

- Event without Parameters
OSM | http://code.google.com/p/umpl | PSM | http://code.google.com/p/umpl

e/source/browse/trunk/cruise.
umple/test/cruise/umple/state
machine/implementation/queue
dStateMachine.ump

e/source/browse/trunk/cruise.
umple/test/cruise/umple/state
machine/implementation/poole
dStateMachine.ump

Event with Parameters, Same Events with

same Parameters

QSM

http://code.google.com/p/umpl

PSM

http://code.google.com/p/umpl

e/source/browse/trunk/cruise.
umple/test/cruise/umple/state
machine/implementation/queue
dStateMachine withParameters.

ump

e/source/browse/trunk/cruise.
umple/test/cruise/umple/state
machine/implementation/poole
dStateMachine withParameters.

ump

Same Events with different Parame

ters (Error message is generated)

QSM

http://code.google.com/p/umpl

PSM

http://code.google.com/p/umpl

e/source/browse/trunk/cruise.

umple/test/cruise/umple/comp

iler/100_eventWithInconsistent
Arguments.ump

e/source/browse/trunk/cruise.

umple/test/cruise /umple/comp

iler/100_eventWithInconsistent
Arguments.ump

Unspecified event (Warning message is generated in case of PSM)

QSM

http://code.google.com/p/umpl

PSM

http://code.google.com/p/umpl

e/source/browse/trunk/cruise.
umple/test/cruise/umple/state
machine/implementation/state
Machine_unSpecifiedReception

QSM.ump

e/source/browse/trunk/cruise.
umple/test/cruise/umple/comp
iler/106_invalid_PooledStateMac
hine UnspecifiedReception.ump
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6.1.6 Umple State Machine Transitions

Table 6.6: Umple test cases for different types of Umple state machine transitions

Types of State Machine’s Transition

* State Transition:

Case 1: | event -> next state

Case 2: | event/ action -> next state

Case 3: | event [guard] -> next state

Case 4: event [guard] / action -> next state

QSM | http://code.google.com/p/umpl | PSM | http://code.google.com/p/umple

e/source/browse/trunk/testbe
d/src/TestHarnessQueuedState

Machine.ump

/source/browse/trunk/testbed/
src/TestHarnessPooledStateMac

hine.ump

¢ [nstantaneous Transition:

Case 1: | Auto-transition to next state

Case 2: | Auto-transition with Transition Action to next state

Case 3: | Auto-transition with Guard to next state

Case 4: | Auto-transition with Guard and Transition Action to next state

OSM | http://code.google.com/p/umpl | PSM | http://code.google.com/p/umple

e/source/browse/trunk/cruise.
umple/test/cruise/umple/state
machine/implementation/queu
edStateMachine_autoTransition.

ump

/source/browse/trunk/cruise.u
mple/test/cruise/umple/statem
achine/implementation/pooledS
tateMachine_autoTransition.ump

e Timed Transition:

Case 1: after/afterEvery (Time in Seconds) -> next state

Case 2: after/afterEvery (Time in Seconds) / action -> next state

Case 3:  after/afterEvery (Time in Seconds) [guard] -> next state

Case 4: after/afterEvery ( Time in Seconds) [guard] / action -> next state

QSM | http://code.google.com/p/umpl | PSM | http://code.google.com/p/umple

e/source/browse/trunk/cruise.
umple/test/cruise/umple/state
machine/implementation/queu
edStateMachine_timedEvents.u

mp

/source/browse/trunk/cruise.u

mple/test/cruise/umple/statem

achine/implementation/pooledS
tateMachine_timedEvents.ump
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6.1.7 Eventless State Machines

Table 6.7: Umple test cases for Umple eventless state machines

Eventless State Machine

Case 1: = One or more Eventless State Machines after one or more Queued/Pooled
State Machines.
QSM | http://code.google.com/p/umpl | PSM | http://code.google.com/p/umple

e/source/browse/trunk/cruise.

umple/test/cruise /umple/comp

iler/106_valid PooledSM_with
EmptyRegularSM.ump

/source/browse/trunk/cruise.u

mple/test/cruise/umple/compil

er/106_valid QSM_with EmptyR
egularSM.ump

Case 2:

Queued/Pooled State Machines.

One or more Eventless State Machines before one or more

QSM

http://code.google.com/p/umpl

PSM

http://code.google.com/p/umple

e/source/browse/trunk/cruise.
umple/test/cruise/umple/state

machine/implementation/event
lessStateMachine_QueuedState

Machine.ump

/source/browse/trunk/cruise.u
mple/test/cruise/umple/statem
achine/implementation/eventles
sStateMachine PooledStateMachi

ne.ump

Case 3:

One or more Eventless State Machines before one or more
Queued/Pooled State Machines, and one or more Eventless State
Machines after one or more Queued/Pooled State Machines

QSM

http://code.google.com/p/umpl

PSM

http://code.google.com/p/umple

e/source/browse/trunk/cruise.
umple/test/cruise/umple/state
machine/implementation/multi
pleQSM_EventlessStateMachine.

ump

/source/browse/trunk/cruise.u
mple/test/cruise/umple/statem
achine/implementation/multiple
PooledStateMachine EventlessSt
ateMachine.ump
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6.1.8 Common Issues

Table 6.8: Umple test cases for other common issues in QSM and PSM

Issues

Case 1: | Queued/Pooled State Machines and Regular State Machines in the
same class
(Error Message is generated)

QSM | http://code.google.com/p/umpl | PSM | http://code.google.com/p/ump

e/source/browse/trunk/cruise.
umple/test/cruise/umple/comp

iler/106_invalidQSMandRegular
SMinSameClass.ump

le/source/browse/trunk/cruise

.umple/test/cruise/umple/com

piler/106_invalidRegularSMand
PooledSMinSameClass.ump

Case 2: PSM, QSM, and Regular State Machine in the same class
(Error Message is generated)
0OSM | http://code.google.com/p/umpl | PSM | http://code.google.com/p/ump

e/source/browse/trunk/cruise.
umple/test/cruise/umple/comp

iler/106_invalidQSMandPooledS
MandRegularSMinSameClass.um

le/source/browse/trunk/cruise
.umple/test/cruise/umple/com
piler/106_invalidQSMandPoole
dSMandRegularSMinSameClass.

b ump
Case 3: | Two or more Queued/Pooled State Machines communicate with each
other
* Inthe same class
* In separate classes
OSM | http://code.google.com/p/umpl | PSM | http://code.google.com/p/ump

e/source/browse/trunk/testbe
d/src/TestHarnessQueuedState

le/source/browse/trunk/testb
ed/src/TestHarnessPooledState

Machine.ump Machine.ump
Case 4: | Queued/Pooled State Machine with states that do not have events
(Warning Message is generated)
QSM | http://code.google.com/p/umpl | PSM | http://code.google.com/p/ump

e/source/browse/trunk/cruise.
umple/test/cruise/umple/comp

iler/106_gqueuedStateMachine n
oEvents.ump

le/source/browse/trunk/cruise

.umple/test/cruise/umple/com

piler/106_pooledStateMachine
noEvents.ump
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6.2 Evaluation of Umple Queued State Machines (QSM)- Case Study

In order to validate our models, we built a set of software systems using Umple:
* Agents communicating
e TCP/IP simulation
* (Coffee machine
* Security light
* Elevator controller system

In our thesis, we focus on elevator controller system that shows the usefulness
of modeling realistic systems in Umple using queued state machines (QSM).

We have based our work on resources (Chen, 2005; Horne, Subburaj, & Urban,
2012; Zhang & Mackworth, 1993) that demonstrate the requirements of the elevator
controller systems.

An elevator system is comprised of several components besides the elevator
controller that are necessary to operate the elevator on a daily basis. In order to enable
passengers to use the elevator system in an efficient way, the elevator controller is used
to control most of the other elevator system’s components.

This system is composed of number of elevator cars that service a number of
floors where passengers move up/down the building.

Essentially, the users of the elevators controller are the passengers and other
components of the elevator system that interact with it. Those components must use
the same format of protocol for signals that the controller uses in order to make
communication among them possible.

The elevator controller’s main function is to interact with and control the
following other components of the elevator system:

Buttons: They are categorized into two types of Buttons:

Summon/Hall Buttons: On the button panel outside of the elevator, the summon
buttons are located. There are two summon buttons up and down on each floor, except
for the ground floor where there is only one up button and the top floor where there is
only one down button. The elevator controller interacts with the summon buttons by

receiving pressed/released signals that indicate the floor number from where the
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summon button is pressed and the requested direction either up or down, and sending
light on/off signals to indicate the status of the summon button that is
pressed/released.

Floor Request Button: The floor request buttons are located on a control panel that is
on the interior of each elevator cab. The number of the floor request buttons in each
elevator cab is according to the number of floors in a particular building starting from
ground floor to the top floor. The elevator controller that controls the elevator cabs in a
building that has number of floors interacts with floor request buttons by receiving
pressed signals that indicate the elevator cab from where the button is pressed and the
desired floor number passenger wants to go to, and sending light on/off signals to
indicate the status of the floor request button that is pressed.

Open Door Button: The open door button is located on a control panel. Passenger can
press open door button to open the elevator doors or to keep pressing the button to
keep the elevator doors open when the elevator cab is parked at a floor. The elevator
controller interacts with this button by receiving pressed/released signal that indicates
the elevator cab from where the button is pressed/released.

Displays (Indicators): These are:

Floor Number Display/Indicator: Inside of each elevator cab, there is a floor number
display that indicates to its passengers which floor the elevator cab is currently on. The
elevator controller interacts with the floor number display by sending a signal to
inform the controller which floor number to display.

Direction Display/Indicator: Interior of each elevator cab, there is a direction display
that indicates to passengers in the elevator cab the current direction of the elevator cab,
which is either up or down. The elevator controller interacts with the direction display
by sending a signal to inform the controller which direction to display.

Elevator Engine (Motor): The elevator engine is in charge of moving an elevator cab in
either up or down direction between floors. The elevator controller interacts with the
elevator engine by sending a signal to the controller to determine in what direction the
engine should be going in and at what speed it should move the elevator cab where a
stop signal is constructed by setting the signal’s speed parameter to zero.

Door Timer: For each elevator door, there is a door timer used to set a mount of time
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to wait before the elevator door is closed.

Elevator doors or simply doors: Refer to the inner door on the elevator cab. The Door
Opening device on elevator cab always opens and closes the outer door (floor door) of
the shaft at the same time as the inner door of the elevator cab. Therefore, there is no
need to refer to the inner and outer doors separately.

Our goal is to use queued state machine models in Umple to simulate the
behavior of the elevator controller are by enabling it to handle input signals from other
components of the elevator systems and respond accordingly with output signals. The
QSM helps in logging and processing requests of passengers and then to moving the
elevator cars between floors in response to those requests.

The class diagram modeled in UmpleOnline that shows the main structure of the
elevator controller system as depicted is shown in Figure 6.1. Note that in a real
elevator system, there would be no ‘Passenger’ class, since passengers are not tracked

individually. However such a class is added here to allow simulation.

Passenger
currentFloor : Floor
DoorTimer destinationFloor : Floor
timeInMilliSeconds : Integer passengerlD : String
1 startingTime : long
endingTime : long
0 T kY

n Tl
* enter

HallButton

1
ElevatorDoor FloorIndicator DirectionIndicator FloorRequestButton
isOpened : boolean lightOn : boolean lightOn : boolean lightOn : boolean plahnedCalfioorNumber : Integer
1 T 1 1
\ N L/

1 Elevator

clevatorlD : Integer 1
elevatorCurrentFloor : Floor
timer : Integer

obstruction : Boolean
1 controtterlownrequbcontrollerUprequest

ElevatorController

——— Direction | | ElevatorMainTest
closetElevator : Elevator

Figure 6.1: Class diagram of an elevator controller system as shown in UmpleOnline
The state machine diagrams shown in Figure 6.2 are modeled in UmpleOnline to
represent the behavior of each component of elevators controller system. The main
state machine described here is the elevator state machine depicted in Figure 6.3,

which describes the actual behavior of the elevator system.
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sm D . tion Direct l OHS M sm DirectionIndicator directionIndicatorSM

NONE DOWN

onDOWN / {...}

UP

sm ElevatorDoor doorSM sm FloorRequestButton floorButtonSM

openDoor / {...} |JcloseDoor / {...}

lightON(Passenger psg) / {...} )lightOFF(Passenger psg) / {...}

sm FloorIndicator floorIndicatorSM

sm HallButton hallButtonSM

lightON(Passenger psg) / {...} )lightOFF(Passenger psg) / {...}

Figure 6.2: State machine diagrams as shown in UmpleOnline for: Floor button, Hall button,
Floor indicator, Direction indicator, elevator door, and eventless machine for direction of the
elevator

sm Elevator elevatorSm

OnFloor M

DoorOpening

doorOpened(Passenger psg) / {...}

obstruction

) [!getO

orOpeningRequest

DoorClosing

doorCLosed(Passenger psg) / {...}

PrepareDown PrepareUp

stopped(Passenger psg) /

upchue:T

( InMotion 3
doorClosed / {...} . doorClosed /7(1..)
(Passenger psg) psg)l / {...

Stopping

Figure 6.3: State machine for elevator behavior as shown in UmpleOnline
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Five of the above state machine diagrams are modeled using queued state
machine as follows:

* elevatorDoorSM: to demonstrate the behavior of elevator door.

* hallButtonSM: to demonstrate the process of requesting hall buttons of the
elevator.

* floorButtonSM: to demonstrate the process of requesting floor buttons.

* floorIndicatorSM: to demonstrate the response to the passenger requests by
displaying the number of floor which the elevator at.

* directionIndicatorSM: to demonstrate the process of showing the direction
where the elevator is going.

The elevator state machine diagram is modeled using pooled state machine as
shown in Figure 6.3.

The Umple code that represents the elevator controller is listed in Appendix F.1,
which can be complied and run to simulate the behavior of the system.

The simulation of different components of the elevator controller system using
queued and pooled state machines brings two advantages to its implementation. Each
component is represented by a state machine that is attached to a class. Using queued
and pooled state machines enables those components to communicate with each other
by passing messages. Those messages are injected into the queue in order to be
processed; that is, those components are communicating asynchronously. Second, we
use a pooled state machine to model the elevator to show that unexpected events that
might occur will be handled.

To highlight these advantages, we use basic state machines to model the
components of the elevator controller system when two passengers arrive and request
the elevators. We have modeled the behaviors of three elevators in a building with five
floors. We then compare the output of this simulation with the output of simulating the
elevator controller system using QSM and PSM.

Figure 6.4 (a) shows the output of the implementation of the elevator controller
system using basic state machines. It shows that some messages are missed which

results in incomplete implementation.
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However, modeling the elevator controller system using QSM and PSM in Figure
6.4 (b) allow for handling the messages that are passed between the components of the
systems. It shows a complete implementation of the system (i.e. simulation of the

behavior of elevators when two passengers arrive and press the hall buttons).

Simulation Output (using Basic SM): I

[Passenger STEPHEN] arrives on [Fl 3] wants to go to [Fl 5]
[Passenger ALIAA] arrives on [Fl 5] wants to go to [Fl 2]
[Passenger STEPHEN] presses FL [5 UP request]

[Passenger ALIAA] presses FL [2 DOWN request]

[FL 3] UP request light ON

[FL 5] UP request light ON

CONTROLLER selects Elevator [3] ON FLOOR [4] to serve Passenger [ALIAA]
Elevator [3] DOWN Direction Indicator

[Elevator 3] starts moving DOWN

[FL 4] signal light ON for [Elevator 3]

[FL 4] signal light OFF for [Elevator 3]

[Elevator 3] [Fl 5] destinations [Fl 5] moving

[FL 5] signal light ON for [Elevator 3]

[FL 5] signal light OFF for [Elevator 3]

Elevator [3] arrives

[FL 5] UP request light OFF

CONTROLLER selects Elevator [3] ON FLOOR [4] to serve Passenger [STEPHEN]
[Elevator 3] elevator door is opened

Elevator [3] EMPTY Direction Indicator

Simulation Output (using QSM and PSM):

[Passenger ALIAA] arrives on [Fl 5] wants to go to [Fl 2]
[Passenger STEPHEN] arrives on [Fl 3] wants to go to [Fl 5]
[Passenger ALIAA] presses FL [2 DOWN request]

[Passenger STEPHEN] presses FlL [5 UP request]

[FL 3] UP request light ON

[FL 5] UP request light ON

CONTROLLER selects Elevator [3] ON FLOOR [4] to serve Passenger [STEPHEN]
CONTROLLER selects Elevator [3] ON FLOOR [4] to serve Passenger [ALIAA]
[Elevator 3] starts moving UP

Elevator [3] UP Direction Indicator

[Elevator 3] [Fl 5] destinations [Fl 5] moving

Elevator [3] arrives

[FL 5] UP request light OFF

[FL 4] signal light ON for [Elevator 3]

[FL 4] signal light OFF for [Elevator 3]

[FL 5] signal light ON for [Elevator 3]

[FL 5] signal light OFF for [Elevator 3]

[Elevator 3] elevator door is opened

Elevator [3] EMPTY Direction Indicator

[Elevator 3] elevator door is closed

[Passenger ALIAA] Trip took : [3005]

[Elevator 3] starts moving UP

Elevator [3] UP Direction Indicator

[FL 5] signal light ON for [Elevator 3]

[Elevator 3] [Fl 4] destinations [FLl 3] moving

[FL 5] signal light OFF for [Elevator 3]

[Elevator 3] [Fl 3] destinations [FLl 3] moving

Elevator [3] arrives

[FL 3] signal light ON for [Elevator 3]

[FL 3] UP request light OFF

[FL 3] signal light OFF for [Elevator 3]

Elevator [3] EMPTY Direction Indicator

[Elevator 3] elevator door is opened

[Passenger STEPHEN] Trip took : [6008]

[Elevator 3] elevator door is closed

Figure 6.4: Simulation Outputs of Elevator Controller System Example
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Chapter 7 Conclusion

The main goal of our thesis was to extend Umple state machines to implement
new semantics, allowing for queuing and pooling of incoming events. Also, we
implemented a mechanism to handle unspecified reception by writing a keyword
‘unspecified’ in a state or states of a state machine in Umple where we want to detect

and handle unexpected events.

We followed the agile approach that allows for the test-driven development
(TDD) to add these enhancements to state machines. In order to do that, we changed

Umple state machine syntax, its metamodel, and the Java code generation.

The core of our work was presented in Chapters 4 and 5, where we showed the
designs of queued and pooled state machines and their implementation. We also
discussed the mechanisms of handling unspecified receptions, and we showed how we

implemented them in Umple.

In Chapter 6, we provided a list of test cases used to evaluate the correctness
and quality of the implementations of QSM and PSM. Also, we gave an example of a real

case study modeled in Umple using queued state machines.

More importantly, we gave answers to the research question presented in the
first chapter. We implemented the queued state machine in Umple taking into
consideration the types of messages that can be passed between queued state machines

such as allowing state machine events to have parameters.

To conclude, we summarize here the contributions that we achieved by the end

of our thesis:

* We enabled support for a FIFO event queue in Umple. An event that is
triggered is added to the queue and then it is taken off the queue and
processed in a separate thread. This extended semantics of Umple state
machine can be used to enhance the communication between components by

allowing signals and asynchronous communication semantics. This
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semantics is used if the keyword ‘queued’ precedes a state machine
definition in Umple.

* We also provided an implementation for pooled semantics that is used if the

keyword ‘pooled’ precedes a state machine definition in Umple. This type of
a state machine is implemented in the same way as a queued state machine,
but it has an additional mechanism where the unspecified reception can be
detected and handled by leaving events at the head of the queue to be
processed later, and instead processing the first matching event that is
further back in the queue.

* We added an additional mechanism for dealing with unspecified reception in

Umple for queued and basic state machines. A pseudo-event name
‘unspecified’ can be indicated on a transition in any state that will match any
event not handled by the state. Such a transition can have all the capabilities
of other events, including a guard, and an action.

Umple has evolved continually, and many extensions have been added to Umple
state machines. Therefore, we have a plan to achieve some work in the future that can
be summarized as follows:

Multithreading: we used ‘implements Runnable’ to create a thread for the class
generated from a queued state machine to allow for multithreading environment. In the
future, we want to implement a new design alternative, which may provide more
flexibility and usability. We can define an inner class that extends Thread where we

define the run method and start it in the constructor of this class. For example:

1 private static class EventProcessorThread extends Thread{
2 X controller;

3 String removalName;

4

5 public EventProcessorThread (X aController, String aRemovalName) {
6 controller = aController;

7 removalName = aRemovalName;

8 start () ;

9 }

10 @Override

11 public void run () {

12 while (true) {

13 if ("removalThread".equals (removalName)) {

14 controller.removalProcessor () ;

15 }

16 }

17 }

18 }
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Deadlocks: this design error is described in our thesis in Chapter 3. Deadlock should
be handled by avoiding, detecting, preventing, or ignoring it. There are some techniques
that can be used to detect this error at the specification level such as model checking
and reachability analysis. After detecting deadlocks, methods can be used to recover
and correct them such as process termination in which one or more processes involved
in the situation can be terminated. In addition, we need to do more research on
different techniques and methods used to capture and recover from this design error in
the models. We also need to do more investigations and tests for a system with multiple
Umple state machines to see if mechanisms for detecting and recovering deadlocks can
be implemented effectively.

Livelock: this is another design error that may occur when two processes or
subsystems keep cycling through a limited set of states, but cannot get out of that cycle.
We aim to do more research on this topic and figure out if we can implement a solution
in Umple state machine to handle this design error.

Number of messages in the pool in case of PSM: we have two more issues to deal with
in the future. The first issue is when the number of messages in the pool becomes too
big with pool communication. The other issue is when some messages are kept in the
pool and they are not processed because there are no receivers to consume them.

Code generation from queued and pooled state machines in other languages: we
enable generating Java code from QSM and PSM, others on our team are working to
generate C++ code from these new types of state machines.

Validating our proposed models with more Umple test cases and additional case
studies: we aim to write larger and complicated test cases in the future to check that
the new features added to Umple state machine are behaving correctly and generating
high-quality code. Also, we have a plan to use QSM and PSM to model systems such as
business cases, communication protocols. Doing this would further show the qualities
and usefulness of Umple queued and pooled state machines.

Visulalization of queued and pooled state machine in UmpleOnline: one of our goals
is to visualize the extentions of Umple state machines (QSM and PSM) on the graphical
formats for the corresponding Umple code written in UmpleOnline. This is future work

to be handled be other team members in CRuiSE group.
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Appendix A

A.1 TCP/IP Simulation Model (Umple)
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Appendix B

B.1 Simple Queued State Machine (QSM) (Java)
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B. 2 Simple Pooled State Machine (PSM) (Java)










B.3 Simple Queued State Machine (Events With No Parameters) (Java)










B.4 Simple Queued State Machine (Events With Parameters) (Java)










Appendix C

C.1 Key Code Generation Jet Templates Files For QSM and PSM

Template name
(*.JET)

Function

JavaClassGenerat
or.jumjet

[t is a generic file used to generate JavaClassGenerator.Java that
is the translator that will be used by the compiler later. We
adapt this file to allow the class generated from Umple code to
implement Runnable interface.

for (StateMachine smg uClass.getStateMachines ()) {
if (smg.isQueued()) {
append (stringBuffer," implements Runnable");
break;

}

else if(smg.isPooled()) {
append (stringBuffer," implements Runnable");
break;

}
Also, we add some templates related to the generated code of

queued and pooled state machines to this generic file by looping
over all state machines, and when a queued or pooled state

machine is detected, these template files are called.
for (StateMachine smg uClass.getStateMachines () ) {
if (smg.isPooled())
{%>
<%@ include
file="queued state machine inner class.jet" %>
<%@ include
file="queued state machine queuedEvent.jet" %>
<%@ include
file="queued state machine removalThread run.jet" %>
<% break;

}
if (smg.isQueued())
{

o\

>

<%@ include

file="queued state machine inner class.jet"
<%@ include

file="queued state machine queuedEvent.jet" %>
<%@ include

file="queued state machine removalThread run.jet" %>

<% break;

o\°
Vv

}
} %>
For queued and pooled state machines, the template calls:
queued state machine inner class
queued state machine queuedEvent
queued state machine removalThread run
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Template name Function

(*.JET)

constructor Declare | We make here the required changes to allow for generating
Default.jet the constructor of the class with a queued or pooled state

machine. The constructor will have the initialization of the
queue where the events are queued or the pool where the
event are added into the pool, as well as the initialization and
run of the queuing or pooling removal thread. It also includes
calling start(0) method to run the thread.

This can be done by looping over all state machines and when
the queued or pooled state machine is detected, then make the

required changes.
if (foundQueued == true)
{

append (stringBuffer, "\n
MessageQueue () ;") ;

append (stringBuffer, "\n
Thread(this) ;")

append (stringBuffer, "\n
{01", uClass.getName ()) ;

append (stringBuffer, "\n
}
if (foundPooled ==
{

append (stringBuffer, "\n
MessagePool () ;") ;

append (stringBuffer, "\n
Thread(this) ;")

append (stringBuffer, "\n
{01", uClass.getName ()) ;

append (stringBuffer, "\n
}

true)

gqueue = new
removal=new

//start the thread of
removal.start();");
pool = new
removal=new

//start the thread of

removal.start();");

members_AllStateM
achines

The change we make here is to loop over all state machines,
and when a queued or pooled state machine is detected, there
will be two attributes to be added to the generated code which

are:

MessageQueue queue/MessagePool pool: to define the
queue/pool in which messages will be queued/pooled.
Thread removal: that is the queuing/pooling removal
processor that removes the events from the queue/pool if

there is one.

For a queued state machine:
append (stringBuffer, "\n
append (stringBuffer, "\n

For a pooled state machine:
append (stringBuffer, "\n

MessageQueue queue;");
Thread removal;"):;

MessagePool pool;");
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Template name
(*.JET)

Function

append (stringBuffer,"\n Thread removal;");

Also, the enumeration of message types will be defined which
has messages of all events of the state machine.

append (stringBuffer,"\n //enumeration type of
messages accepted by {0}", uClass.getName ()) ;

append (stringBuffer, "\n enum MessageType { {0}
1", gen.translate("listEventsForQSM",uClass)) ;

In the case of pooled state machine, the enumerated values of
messages types will contain ‘null_M’ message type if there is a
state or substate that does not have any events.

The reason for this is that we will also create a set of message
types for each state and substate if using Map.

{
append (stringBuffer,"\n //enumeration type of
messages accepted by {0}", uClass.getName()) ;

append (stringBuffer, "\n enum MessageType { {0}
1", gen.translate("listEventsForPooledSM",uClass)) :;

}

if (foundPooled == true)
{

append (stringBuffer, "\n") ;

append (stringBuffer,"\n // Map for a {0} pooled
state machine that allows querying which events are
possible in each map", uClass.getName()) ;

append (stringBuffer, "\n") ;

append (stringBuffer,"\n public static final
Map<Object, HashSet<MessageType>> stateMessageMap =
new HashMap<Object, HashSet<MessageType>>();");

append (stringBuffer,"\n static {");
}

for (StateMachine sm : uClass.getStateMachines())
{
if (sm.isPooled())
{
append (stringBuffer, "\n
{0}",gen.translate ("listMessageTypesStates",sm)) ;
}
}
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Template name
(*.JET)

Function

state_machine_Eve
nt

What we do here is to add the _underscore symbol before the
event name for each event handling method, including regular
and timed events of a state machine but not the unspecified
event.

Also, we allow for events to have any number of arguments. If
the event is defined to be an ‘unspecified’ event, then it will
have two arguments: state and event as strings.

<%= scope %> boolean <%for (StateMachine sm :

uClass.getStateMachines () ) {if ((sm.isQueued () &&
e.getIsInternal () == false && e.isAutoTransition() ==
false && !e.isUnspecified()) || (sm.isPooled() &&
e.getIsInternal () == false && e.isAutoTransition() ==
false &&

!e.isUnspecified())) {append(stringBuffer," ");}break;
}$><%=gen.translate ("eventMethod", e) %> (<%=

(e.getArgs ()==null?"":e.getArgs () ) $><%if (e.isUnspecif
ied()) {append (stringBuffer,"String state, String
event") ;}%>)

queued state mach
ine_queuedEvent.je
t

This is a new template added to create state machine events
handling methods in the case of queued or pooled state
machines.

When these event handling methods are called, they add
events to the queue/pool including the event message types
and any parameters they have.

You can find this template at location:
http://code.google.com/p/umple/source/browse/trunk/Ump
leToJava/templates/queued_state machine queuedEvent.jet

queued state mach
ine_removalThread
_run.jet

This new template is added to handle the generated code for
the run method of the queuing and pooling removal thread. It
contains the run method which when it starts, has a while loop
to remove the events from the queue/pool and processes it,
then it will check for the next event in the queue/pool and if
there is any, it will remove it and process it and so on. If there
are no events in the queue/pool, it will wait for an event to be
added.

You can find this template at location:
http://code.google.com/p/umple/source/browse/trunk/Ump
leToJava/templates/queued_state machine removalThread _ru

n.jet
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Template name
(*.JET)

Function

queued state machi
ne inner class.jet

This a new file is added to handle the code for the Message
and MessagQueue/MessagPool inner classes. These classes
will be generated for queued or pooled state machines.

The Message class is used for representing any message.

The MessageQueue class has put and getNext methods that
add and remove the events from the queue.

The MessagePool class has a different getNext method which
works in a different way while taking the events off the pool.
You can find this template at location:
http://code.google.com/p/umple/source/browse/trunk/UmpleToJav
a/templates/queued state_machine inner class.jet
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Appendix D

D.1 Semantic Test For a Queued State Machine







D.2 Semantic Test For a Pooled State Machine

WoOoOJoULbd WN K

package cruise.pooled.statemachine.test;

import org.junit.Assert;

import org.junit.Tes;

import static org.junit.Assert.*;

import static org.hamcrest.CoreMatchers.*;

public class PooledStateMachineTest

{

@Test

public void numberOfMessagesInMessageType ()

{
// compare the number of messages in MessageType is equal to the
// number of events in State Machine except and auto-transition
Assert.assertEquals (2, X.MessageType.values () .length);
Assert.assertEquals (true,
X.MessageType.valueOf ("el M") .equals (X.MessageType.el M)) ;
Assert.assertEquals (true,
PooledSM.MessageType.valueOf ("e2 M") .equals (X.MessageType.e2 M));

}

@Test

public void numberOfKeysInstateMessageMap ()

{
// compare the number of states is equal to the number of keys in
// stateMessageMap
Assert.assertEquals (X.Sm.values () .length,
X.stateMessageMap.keySet () .size());
Assert.assertEquals (2, X.stateMessageMap.keySet () .size()):;

}

@Test

public void eachStateOfStateMachineAddedTostateMessageMap ()

{
//check that every state of SM it is put in stateMessageMap
Assert.assertEquals (true, X.stateMessageMap.containsKey (X.Sm.sl)) ;
Assert.assertEquals (true, X.stateMessageMap.containsKey (X.Sm.s2)) ;

}

@Test

public void everyStateHasListOfMessages ()

{
//check that every state has its set Of messages
Assert.assertEquals (1, X.stateMessageMap.get (X.Sm.sl).size());
Assert.assertEquals (1, X.stateMessageMap.get (X.Sm.s2).size());
Assert.assertEquals (true, X.stateMessageMap.get (X.Sm.sl)
.containsAll (X.stateMessageMap.get (X.Sm.sl))) ;
Assert.assertEquals (true, PooledSM.stateMessageMap.get (X.Sm.s2)
.containsAll (X.stateMessageMap.get (X.Sm.s2))) ;

}

@Test

public void sizeOfstateMessageMap ()

{
//size of stateMessageMap which contains (state, list of
//MessageTypes)
Assert.assertEquals (2, X.stateMessageMap.size());

}

@Test

public void processEvents () throws InterruptedException

{

X psm = new X();
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D.3 Semantics Test For QSM Using Unspecified Reception Mechanism
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//selectAnotherTransiction is triggered: selectAnotherTransiction is
//queued
gsm.selectAnotherTransiction () ;
//selectAnotherTransiction is dequeued: it is unspecified,
//unspecified method is called to handle this error
//transition to errorl
//auto-transition to idle
numChecks=200; // we will check for a second
while (numChecks>0 &&
gsm.getSm () .equals (AutomatedTellerMachine.Sm.idle)) {
if (!gsm.queue.messages.isEmpty ()) {
Thread.sleep(5) ;
numChecks--;
lelse{
Assert.assertEquals (AutomatedTellerMachine.Sm. idle,
gsm.getSm()) ;
Assert.assertEquals(true, gsm.queue.messages.isEmpty())
break; }
}
assertThat (numChecks, not(equalTo(0)));
Assert.assertEquals (AutomatedTellerMachine.Sm.idle, gsm.getSm()) ;
// check if there is a message saved in the queue
Assert.assertEquals (0, gsm.queue.messages.size());
//maintain is triggered: maintain is queued
gsm.maintain() ;
//maintain is dequeued and processed: transition to maintenance
numChecks=200; // we will check for a second
while(!gsm.getSm() .equals (AutomatedTellerMachine.Sm.maintenance) &&
numChecks>0) {
Thread.sleep(5) ;
numChecks--;
}
assertThat (numChecks, not(equalTo(0)));
Assert.assertEquals (AutomatedTellerMachine.Sm.maintenance,
gsm.getSm() ) ;
// check if there is a message saved in the queue
Assert.assertEquals (0, gsm.queue.messages.size());
//isMaintained is triggered: isMaintained is queued
gsm.isMaintained() ;
//isMaintained is dequeued and processed: transition to idle
numChecks=200; // we will check for a second
while(!gsm.getSm() .equals (AutomatedTellerMachine.Sm.idle) &&
numChecks>0) {
Thread.sleep(5) ;
numChecks--;
}
assertThat (numChecks, not(equalTo(0)));
Assert.assertEquals (AutomatedTellerMachine.Sm.idle, gsm.getSm()) ;
// check if there is a message saved in the queue
Assert.assertEquals (0, gsm.queue.messages.size());
//cancel is triggered: cancel is queued
gsm.cancel () ;
//cancel is dequeued: it is unspecified, unspecified method is called
//to handle this error
//transition to errorl
//auto-transition to idle
numChecks=200; // we will check for a second
while (numChecks>0 &&
gsm.getSm () .equals (AutomatedTellerMachine.Sm.idle)) {
if (!gsm.queue.messages.isEmpty ()) {
Thread.sleep(5) ;
numChecks--;
telsef
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Assert.assertEquals (AutomatedTellerMachine.Sm. idle,
gsm.getSm() ) ;
Assert.assertEquals(true, gsm.queue.messages.isEmpty()) ;
break; }
}
assertThat (numChecks, not(equalTo(0)));
Assert.assertEquals (AutomatedTellerMachine.Sm.idle, gsm.getSm()) ;
// check if there is a message saved in the queue
Assert.assertEquals (0, gsm.queue.messages.size());
//cardInserted is triggered: cardInserted is queued
gsm.cardInserted() ;
//cardInserted is dequeued and processed: transition to active
numChecks=200; // we will check for a second
while(!gsm.getSm() .equals (AutomatedTellerMachine.Sm.active) &é&
numChecks>0) {
Thread.sleep(5) ;
numChecks--;
}
assertThat (numChecks, not(equalTo(0)));
Assert.assertEquals (AutomatedTellerMachine.Sm.active, gsm.getSm()) ;
// check if there is a message saved in the queue
Assert.assertEquals (0, gsm.queue.messages.size());
//select is triggered: select is queued
gsm.select () ;
Thread.sleep(10) ;
//select is dequeued: it is unspecified, unspecified method is called
//to handle this error
//transition to error2
//auto-transition to validating
numChecks=200; // we will check for a second
while (!gsm.getSmActive () .equals (AutomatedTellerMachine.SmActive.valida
ting) && numChecks>0) {
Thread.sleep(5) ;
numChecks—--; }
assertThat (numChecks, not(equalTo(0)));
Assert.assertEquals (AutomatedTellerMachine.Sm.active, gsm.getSm()) ;
Assert.assertEquals (AutomatedTellerMachine.SmActive.validating,
gsm.getSmActive () ) ;
// check if there is a message saved in the queue
Assert.assertEquals (0, gsm.queue.messages.size());
//validated is triggered: validated is queued
gsm.validated() ;
//validated is dequeued and processed: transition to selecting
numChecks=200; // we will check for a second
while (!gsm.getSmActive () .equals (AutomatedTellerMachine.SmActive.select
ing) && numChecks>0)
{ Thread.sleep(5) ;
numChecks—--; }
assertThat (numChecks, not(equalTo(0)));
Assert.assertEquals (AutomatedTellerMachine.Sm.active, gsm.getSm()) ;
Assert.assertEquals (AutomatedTellerMachine.SmActive.selecting,
gsm.getSmActive () ) ;
// check if there is a message saved in the queue
Assert.assertEquals (0, gsm.queue.messages.size());
//select is triggered: select is queued
gsm.select();//select is dequeued and processed: transition to
//processing
numChecks=200; // we will check for a second
while (!gsm.getSmActive () .equals (AutomatedTellerMachine.SmActive.proces
sing) &&numChecks>0)
{Thread.sleep(b) ;
numChecks--;
}
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assertThat (numChecks, not(equalTo(0)));
Assert.assertEquals (AutomatedTellerMachine.SmActive.processing,
gsm.getSmActive () ) ;
Assert.assertEquals (AutomatedTellerMachine.Sm.active, gsm.getSm()) ;
// check if there is a message saved in the queue
Assert.assertEquals (0, gsm.queue.messages.size());
//selectAnotherTransiction is triggered: selectAnotherTransiction is
//queued
gsm.selectAnotherTransiction () ;
//selectAnotherTransiction is dequeued and processed: transition to
//processing
numChecks=200; // we will check for a second
while (!gsm.getSmActive () .equals (AutomatedTellerMachine.SmActive.select
ing) && numChecks>0)
{Thread.sleep(5) ;
numChecks—--; }
assertThat (numChecks, not(equalTo(0)));
Assert.assertEquals (AutomatedTellerMachine.SmActive.selecting,
gsm.getSmActive () ) ;
Assert.assertEquals (AutomatedTellerMachine.Sm.active, gsm.getSm()) ;
// check if there is a message saved in the queue
Assert.assertEquals (0, gsm.queue.messages.size());
//select is triggered: select is queued
gsm.select () ;
//select is dequeued and processed: transition to processing
numChecks=200; // we will check for a second
while (!gsm.getSmActive () .equals (AutomatedTellerMachine.SmActive.proces
sing) && numChecks>0) {
Thread.sleep(5) ;
numChecks—--; }
assertThat (numChecks, not(equalTo(0)));
Assert.assertEquals (AutomatedTellerMachine.SmActive.processing,
gsm.getSmActive () ) ;
Assert.assertEquals (AutomatedTellerMachine.Sm.active, gsm.getSm()) ;
// check if there is a message saved in the queue
Assert.assertEquals (0, gsm.queue.messages.size());
//finish is triggered: finish is queued
gsm.finish () ;
//finish is dequeued and processed: transition to printing
numChecks=200; // we will check for a second
while (!gsm.getSmActive () .equals (AutomatedTellerMachine.SmActive.printi
ng) && numChecks>0) {
Thread.sleep(5) ;
numChecks—--; }
assertThat (numChecks, not(equalTo(0)));
Assert.assertEquals (AutomatedTellerMachine.SmActive.printing,
gsm.getSmActive () ) ;
Assert.assertEquals (AutomatedTellerMachine.Sm.active, gsm.getSm()) ;
// check if there is a message saved in the queue
Assert.assertEquals (0, gsm.queue.messages.size());
//receiptPrinted is triggered: receiptPrinted is queued
gsm.receiptPrinted() ;
//receiptPrinted is dequeued and processed: transition to idle
numChecks=200; // we will check for a second
while (!gsm.getSm() .equals (AutomatedTellerMachine.Sm.idle) &&
numChecks>0) {
Thread.sleep(5) ;
numChecks--;
}
assertThat (numChecks, not(equalTo(0)));
Assert.assertEquals (AutomatedTellerMachine.Sm.idle, gsm.getSm()) ;
// check if there is a message saved in the queue
Assert.assertEquals (0, asm.gueue.messades.sizel()):

189




190



Appendix E

E.1 Pseudocode of the Generated Java Code For Unspecified Reception

Mechanism For QSM and Basic State Machine




Appendix F

F.1 Umple Code For Elevator Controller System
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if (this.getElevatorCurrentFloor () .getFloorNumber () >
psg.getCurrentFloor () .getFloorNumber ()) {
int x = psg.getCurrentFloor () .getFloorNumber () ;
for(int i = this.getElevatorCurrentFloor ().getFloorNumber (); i >
x; i--){
if (this.getElevatorCurrentFloor () .getFloorNumber () != x) {
setElevatorCurrentFloor (new
Floor (this.getElevatorCurrentFloor () .getFloorNumber () - 1));
System.out.println (" [Elevator "+this.getElevatorID()+"] [F1
"t+this.getElevatorCurrentFloor () .getFloorNumber () +"]
destinations [Fl1 "+x+"] moving");
}
if (this.getElevatorCurrentFloor () .getFloorNumber () == x) {
this.getFloorIndicator().lightON(this.getElevatorCurrentFloor
0)) s
floorRequested = true;

}
}
return floorRequested;

}

namespace elevatorSystem2;

/**

* Direction enumerations

**/

class Direction {

//Direction Enumeration
DirectionSM {

UP {}

DOWN {}

NONE {}
}

namespace elevatorSystem2;

/**
* A building floor
*/
class Floor{
1 -- * Passenger passengerWaitingOnFloor;
1 -- 1 HallButton;

Integer floorNumber;

public Floor (int aFloorNumber)

{
floorNumber = aFloorNumber;
passengerWaitingOnFloor = new ArrayList<Passenger>();
hallButton = new HallButton (this);

}

namespace elevatorSystem2;

/**

* A passenger requesting and travelling on an elevator

*/

class Passenger{
Floor currentFloor; //A passenger's current floor
Floor destinationFloor; //A passenger's destination floor
String passengerID; //Passenger id which could be a name
long startingTime; //Start time of trip for each passenger
long endingTime; //End time of trip for each passenger
active {

System.out.println (" [Passenger "+getPassengerID()+"] arrives on [F1l

"+this.getCurrentFloor () .getFloorNumber () +"1 wants to go to [F1
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"+this.getDestinationFloor () .getFloorNumber () +"]1");
//Passenger is waiting On Floor
getCurrentFloor () .addPassengerWaitingOnFloor (this) ;
//Passenger is pressing Hall button
if (this.getCurrentFloor ().getFloorNumber () <
this.getDestinationFloor () .getFloorNumber ()) {
System.out.println (" [Passenger "+getPassengerID()+"] presses Fl
["+this.getDestinationFloor () .getFloorNumber () +"
"+this.passengerDirectionUP () +" request]");
this.getCurrentFloor().getHallButton () .pressHallButton (this,
this.passengerDirectionUP()) ;
}
else if (this.getCurrentFloor () .getFloorNumber () >
this.getDestinationFloor () .getFloorNumber ()) {
System.out.println (" [Passenger "+getPassengerID()+"] presses Fl
["+this.getDestinationFloor () .getFloorNumber () +"
"+this.passengerDirectionDOWN () +" request]");
this.getCurrentFloor () .getHallButton () .pressHallButton (this,
this.passengerDirectionDOWN () ) ;
}
startClock () ;
}
public Passenger (Floor aCurrentFloor, Floor aDestinationFloor, String
aPassengerID) {
currentFloor = aCurrentFloor;
destinationFloor = aDestinationFloor;
passengerID = aPassengerID;
setStateMachinelTopLevel (StateMachinelTopLevel.Null) ;
setStateMachinel (StateMachinel. topLevel) ;
}
// A direction UP when a passenger presses UP hall button
Direction.DirectionSM passengerDirectionUP () {
return Direction.DirectionSM.UP;
}
// A direction DOWN when a passenger presses DOWN hall button
Direction.DirectionSM passengerDirectionDOWN () {
return Direction.DirectionSM.DOWN;
}
//Start a timer once a passenger requests an elevator
vold startClock () {
startingTime = System.currentTimeMillis () ;
}
//Stop a timer once a passenger arrives to a destination floor and then
//get the total time he/she spent
void stopClock () {

endingTime = System.currentTimeMillis () ;
System.out.print (" [Passenger "+this.getPassengerID()+"] Trip took
[" + this.getTripTimeInMilliseconds () + "] \n");

}
//Get time in Seconds a passenger spends from requesting an elevator
//till arriving to a destination floor
long getTripTimeInMilliseconds () {
return ((endingTime- startingTime));
}
}
namespace elevatorSystem2;
/**
* An electric motor for each elevator.
* When directed by an Elevator Controller, the motor moves, or stops the
* elevator.
*/
class Motor({
depend java.util.*;
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//Motor is moving an elevator UP
void goUp () {
System.out.println (" [Elevator "+getElevator () .getElevatorID()+"]
starts moving UP");
}
//Motor is moving an elevator DOWN
void goDown () {
System.out.println (" [Elevator "+getElevator () .getElevatorID()+"]
starts moving DOWN") ;
}
//Motor stops an elevator at a destination floor of a waiting passenger
void stop() {
System.out.println ("Elevator ["+tgetElevator () .getElevatorID()+"]
arrives") ;
}
}
namespace elevatorSystem2;
/**
* Elevator's Door which is opened or closed
=
class ElevatorDoor{
1 -— 1 DoorTimer;
boolean isOpened=false;
queued doorSM {
doorClose {

openDoor /{this.openElevatorDoor ();} -> doorOpen;
}
doorOpen {
closeDoor /{this.closeElevatorDoor();} -> doorClose;

}
}
public ElevatorDoor (int aTimeInMilliSecondsForDoorTimer, Elevator
aElevator) {

isOpened = false;

doorTimer = new DoorTimer (aTimeInMilliSecondsForDoorTimer, this);

if (aElevator == null || aElevator.getElevatorDoor () != null) ({
throw new RuntimeException ("Unable to create ElevatorDoor due to
aElevator") ;

}
elevator = aElevator;
setDoorSM (DoorSM.doorClose) ;
queue = new MessageQueue () ;
removal=new Thread (this);
//start the thread of ElevatorDoor
removal.start () ;
}
//An elevator door is opened and a timer is started
void openElevatorDoor () {
isOpened=true;
System.out.println (" [Elevator "+getElevator () .getElevatorID()+"]
elevator door is opened");
}
//An elevator door is closed and a timer is up
vold closeElevatorDoor () {
isOpened=false;
System.out.println (" [Elevator "+getElevator () .getElevatorID()+"]
elevator door is closed");
}
}
namespace elevatorSystem2;
/**
* Determine a timer for an Elevator Door
*/
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class DoorTimer{
Integer timeInMilliSeconds;
//Set Timer for an Elevator Door once it is opened
public int timeIsUp () {
timeInMilliSeconds=5;
return timeInMilliSeconds;
}
}
namespace elevatorSystem2;
/**
* UP and DOWN push Buttons (Hall Buttons)
*/
class HallButton({
queued hallButtonSM({
Released {
1ightON (Passenger psg) /{this.lightingOn(psg);} -> Pressed;
}

Pressed {
1ightOFF (Passenger psg) /{this.lightingOff (psg);} -> Released;
}
}
//Light a hall button on
void lightingOn (Passenger psg) {
if (psg.passengerDirectionUP () .equals (Direction.DirectionSM.UP)) {
System.out.println (" [F1 "+psg.getCurrentFloor () .getFloorNumber ()+"]
"+psg.passengerDirectionUP () +" request light ON") ;
}
if (psg.passengerDirectionUP () .equals (Direction.DirectionSM.DOWN)) {
System.out.println (" [Fl "+psg.getCurrentFloor () .getFloorNumber ()+"]
"+psg.passengerDirectionUP () +" request light ON") ;
}
}
//Light a hall button off
void lightingOff (Passenger psg) {
if (psg.passengerDirectionUP () .equals (Direction.DirectionSM.UP)) {
System.out.println (" [Fl "+psg.getCurrentFloor () .getFloorNumber ()+"]
"+psg.passengerDirectionUP () +" request light OFF");
}
if (psg.passengerDirectionUP () .equals (Direction.DirectionSM.DOWN)) {
System.out.println (" [Fl "+psg.getCurrentFloor () .getFloorNumber ()+"]
"t+psg.passengerDirectionDOWN () +" request light OFF");
}
}
//Passenger presses a hall button to request an elevator
void pressHallButton (Passenger psg, Direction.DirectionSM
passengerDirection) {
this.lightON (psg) ;
//Add requestedUp Floor To a list AND requestedDown Floor to a list
if (passengerDirection.equals (Direction.DirectionSM.UP)) {
if (psg.getCurrentFloor () .getFloorNumber () <
psg.getDestinationFloor () .getFloorNumber ()) {
ElevatorController.getInstance () .addRequestedUP (psg.getCurrentFloor (
));
}
}
if (passengerDirection.equals (Direction.DirectionSM.DOWN) ) {
if (psg.getCurrentFloor () .getFloorNumber () >
psg.getDestinationFloor () .getFloorNumber ()) {
ElevatorController.getInstance () .addRequestedDOWN (psg.getCurrentF1l
oor());

}
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ElevatorController.getInstance () .closetElevator (psg,
passengerDirection) ;
}
}
namespace elevatorSystem2;
/**
* Floor buttons allow a passenger to select a floor wants to go to
*/
class FloorRequestButton{
boolean lightOn=false;
queued floorButtonSM({
OFF {
1ightON (Passenger psg) /{this.lightingOn (psg) ;}-> ON;
}

ON {
1ightOFF (Passenger psg) /{this.lightingOff (psg);}-> OFF;
}
}
//Light a selected destination floor button on
void lightingOn (Passenger psg) {
System.out.println ("Elevator ["+tgetElevator () .getElevatorID()+"]
Passenger ["+psg.getPassengerID()+"] : FLOOR REQUEST BUTTON LIGHT
ON") ;
this.lightOn=true;
}
//Light a selected destination floor button off
void lightingOff (Passenger psg) {
System.out.println ("Elevator ["+tgetElevator () .getElevatorID()+"]
Passenger ["+psg.getPassengerID()+"] : FLOOR REQUEST BUTTON LIGHT
OFF") ;
this.lightOn=false;
}
}
namespace elevatorSystem2;
/**
* Floor indicators inside an elevator on top of the elevator door.
* It indicates to a passenger inside of the elevator the current
* Jlocation (floor number) of the elevator
=
class FloorIndicator{
boolean lightOn=false;
queued floorIndicatorSM{
OFF {
1ightON (Floor floor) /{this.lightingOn (floor);}-> ON;
}
ON {
1ightOFF (Floor floor) /{this.lightingOff (floor);}-> OFF;
}
}
//Light a floor number button on
void lightingOn (Floor floor) {
this.lightOn=true;
System.out.println (" [F1 "+ floor.getFloorNumber ()+"] signal light ON
for [Elevator "+getElevator().getElevatorID()+"] ");
}
//Light a floor number button off
void lightingOff (Floor floor) {
this.lightOn=false;
System.out.println (" [F1 "+ floor.getFloorNumber ()+"] signal light OFF
for [Elevator "+getElevator () .getElevatorID()+"] ");
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563 |[namespace elevatorSystem?2;

564 | /**

565 * Light Indicators (Direction Indicators) inside an Elevator indicate
566 * the current direction the elevator

567 #y

568 |class DirectionIndicator ({

569 boolean lightOn=false;

570 queued directionIndicatorSM ({

571 NONE {

572 onUP /{this.lightingOnUP();}-> UP;

573 onDOWN /{this.lightingOnDOWN () ; }-> DOWN;

574 }

575 UP {

576 off /{this.lightingOff();}-> NONE;

577 }

578 DOWN {

579 off /{this.lightingOff();}-> NONE;

580 }

581 }

582 //Light a direction indicator UP — on

583 void 1lightingOnUP () {

584 this.lightOn=true;

585 System.out.println ("Elevator ["+getElevator () .getElevatorID()+"]
586 Direction Indicator");

587 }

588 //Light a direction indicator DOWN — on

589 void 1lightingOnDOWN () {

590 this.lightOn=true;

591 System.out.println ("Elevator ["+getElevator () .getElevatorID()+"]
592 DOWN Direction Indicator"):;

593 }

594 //Light a direction indicator off

595 void lightingOff () {

596 this.lightOn=false;

597 System.out.println ("Elevator ["+getElevator () .getElevatorID()+"]
598 EMPTY Direction Indicator"):;

599 }

600 |}

601 |namespace elevatorSystem2;
602 |[class ElevatorMainTest{

603 depend java.util.*;

604 public static void main (String[] args) {

605 //Initiating Floors

606 Integer numberOfFloors = 5;

607 ArrayList<Floor> floors = new ArrayList<Floor>();
608 for (int 1 = 0; 1 < numberOfFloors; i++) {

609 Floor floor = new Floor (i+1l);

610 floors.add (i, floor):;

611 }

612 //Initiating Elevators

613 Elevator elevatorl = new Elevator(l, new Floor (1),
614 ElevatorController.getInstance()) ;

615 Elevator elevator2 = new Elevator (2, new Floor(2),
616 ElevatorController.getInstance()) ;

617 Elevator elevator3 = new Elevator (3, new Floor (4),
618 ElevatorController.getInstance()) ;

619 //Passengers:

620 Passenger passengerl=new Passenger (floors.get(2), floors.get (4),
621 "STEPHEN") ;

622 Passenger passenger2=new Passenger (floors.get(4), floors.get(l),
623 "ALIAA") ;

624 }

625 |}
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